Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 241-245    
  无机非金属及其复合材料 |
掺铝土尾矿泡沫轻质土的物理力学及水力特性研究
欧孝夺1,2,3, 彭远胜1,2,3, 莫鹏1,2,3, 江杰1,2,3
1 广西大学土木建筑工程学院,南宁 530004;
2 工程防灾与结构安全重点实验室,南宁 530004;
3 广西金属尾矿安全防控工程技术研究中心,南宁 530004
Study on the Physical Mechanical and Hydraulic Properties of Foamed MixtureLightweight Soil Mixed with Bauxite Tailings
OU Xiaoduo1,2,3, PENG Yuansheng1,2,3, MO Peng1,2,3, JIANG Jie1,2,3
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China;
2 Security Key Laboratory of Disaster Prevention and Structural Engineering, Nanning 530004, China;
3 Guangxi Engineering Research Center for Metallic Tailings Security Prevention and Control, Nanning 530004, China
下载:  全 文 ( PDF ) ( 9231KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为更好地利用大量废弃的铝土尾矿泥,可将其用于泡沫轻质土的制备。本实验研究了铝土尾矿泡沫轻质土在四种设计湿密度下流动度、无侧限抗压强度、体积吸水率及微观结构的变化规律,并建立其无侧限抗压强度与湿密度的关系,揭示体积吸水率随浸泡时间的变化规律。试验结果表明,铝土尾矿泡沫轻质土的无侧限抗压强度随设计湿密度的增加而增大,铝土尾矿泥不仅可作为泡沫轻质土的骨料,也可充当胶凝材料取代部分水泥,无侧限抗压强度随着湿密度的增加呈近似指数型增长。铝土尾矿泡沫轻质土湿密度和体积吸水率随浸泡时间的延长先迅速增长而后变得缓慢,最后趋于稳定,且体积吸水率随着设计湿密度的增大而减小。随着水泥和铝土尾矿泥含量增大及泡沫含量减小,铝土尾矿泡沫轻质土孔隙逐渐变得稀少,结构变得更加密实,强度增长较为明显。此材料的应用将为工程建设带来巨大的经济和环境效益。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
欧孝夺
彭远胜
莫鹏
江杰
关键词:  铝土尾矿  泡沫轻质土  抗压强度  吸水率    
Abstract: In order to make better use of a large amount of discarded bauxite tailings (BTs), the foamed mixture lightweight soil mixed with BTs (FMLSB) was proposed. The changes rules of fluidity, unconfined compressive strength, volume water absorption and microstructure of FMLSB under four designed wet densities were studied. Furthermore, the relationship between unconfined compressive strength and wet density was established, and the variation of volume water absorption with soaking time was revealed. The results show that unconfined compressive strength increases with the designed wet density increases. BTs can not only be used as aggregate of FMLSB, but also as cementing material to replace part of cement. The unconfined compressive strength increases exponentially as the wet density increases. The wet density and volume water absorption of FMLSB firstly increase rapidly with soaking time increases, then becomes slowly and finally tends to be stable, and the volume water absorption decreases with the designed wet density increases. With the increase of the content of cement and BTs and the decrease of foam content, the number of pores becomes rare, as well as the pores are not connected with each other, which makes the strength increase significantly. The application of this material will bring great economic and environmental benefits to engineering construction.
Key words:  bauxite tailings (BTs)    foamed mixture lightweight soil (FMLS)    compressive strength    water absorption
                    发布日期:  2020-07-01
ZTFLH:  U414  
基金资助: 国家自然科学基金(51768006;51978179);广西重点研发计划项目(桂科AB17195035)
作者简介:  欧孝夺,广西大学土木建筑工程学院,教授,博士生导师。2004年6月毕业于广西大学,获得工学博士学位。主要从事环境岩土工程、尾矿库安全治理等方面的教学和科研工作;江杰,广西大学土木建筑工程学院,研究员,硕士生导师。2008年7月毕业于同济大学,获岩土工程专业博士学位。主要从事岩土工程方面的教学和科研工作。
引用本文:    
欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
OU Xiaoduo, PENG Yuansheng, MO Peng, JIANG Jie. Study on the Physical Mechanical and Hydraulic Properties of Foamed MixtureLightweight Soil Mixed with Bauxite Tailings. Materials Reports, 2020, 34(Z1): 241-245.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/241
1 Wang G C, Sha L, Jin F L. Applied Mechanics & Materials,2013,275-277,1281.
2 Ng S C, Low K S, Tioh N H. Ksce Journal of Civil Engineering,2012,16,809.
3 Li Z L, Zhang K F. Applied Mechanics & Materials,2012,204-208,1622.
4 Yun T K, Ahn J, Han W J, et al. Journal of Materials in Civil Enginee-ring,2010,22,539.
5 Zhou C. Key Engineering Materials,2016,703,411.
6 Cong M, Bing C. Construction and Building Materials,2015,76,61.
7 Kearsley E P, Wainwright P J. Cement and Concrete Research,2001,31,105.
8 Tamilselvan T, Babu D S. ACI Materials Journal,2006,103,45.
9 Yang H, Chen C, Pan L, et al. Journal of the European Ceramic Society,2009,29,1887.
10 Shan S Y, Ma A H, Hu Y C, et al. Environmental Pollution,2016,208,546.
11 Ou X D, Yang J W, Yin X T, et al. Applied Mechanics and Materials,2011,90-93,3102.
12 Yang H, Chen C, Sun H, et al. Journal of Materials Processing Technology,2008,197,206.
13 Ye J, Zhang W, Shi D. Construction & Building Materials,2014,69,41.
14 Klemeš J J, Varbanov P S, Pierucci S,et al. Journal of Cleaner Production,2010,18,843.
15 Thongthai Witoon. Ceramics International,2011,37,3291.
16 Yang H, Chen C, Pan L, et al. Journal of the European Ceramic Society,2009,29,1887.
17 Wang Y, Lan Y, Hu Y. Minerals Engineering,2008,21,913.
18 Wang Y H, Lan Y, Huang C B. Journal of Central South University of Technology,2008,15,183.
19 Ma D, Wang Z, Guo M, et al. Waste Management,2014,34,2365.
20 Zhang Y, Lei H, Ma A, et al. Environmental Science and Pollution Research,2018,25,28015.
21 Liu X, Sheng K, Li Z L, et al. Advances in Materials Science and Engineering,2017,2017,1.
22 广东冠生土木工程技术有限公司.气泡混合轻质土填筑工程技术规程(CJJ/T 177-2012),中国建筑工业出版社,2012.
23 Jitchaiyaphum K, Sinsiri T, Jaturapitakkul C, et al. International Journal of Minerals, Metallurgy, and Materials,2013,20,462.
[1] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[2] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[3] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[6] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[7] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[8] 苏胜奇, 卢家成, 李嘉鹏, 刘晨辉, 李飞. 再生细骨料对蓄水层渗蓄性能的影响[J]. 材料导报, 2019, 33(Z2): 226-228.
[9] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[10] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[11] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[12] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[13] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[14] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[15] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed