Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 100-104    https://doi.org/10.11896/j.issn.1005-023X.2017.04.022
  材料研究 |
嵌段共聚物增容共混聚合物的相形貌及胶束迁移行为研究*
黄林1, 杨艳琼1, 余峰1, 付甲2, 陈忠仁1,2
1 宁波大学材料科学与化学工程学院, 宁波 315211;
2 南方科技大学化学系, 深圳 518055
Morphology and Micelle Migration Behavior of Melt Blend Compatibilized by Block Copolymer
HUANG Lin1, YANG Yanqiong1, YU Feng1, FU Jia2, CHEN Zhongren1,2
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211;
2 Department of Chemistry,South University of Science and Technology of China, Shenzhen 518055
下载:  全 文 ( PDF ) ( 1662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 主要研究了对称性的聚苯乙烯-聚甲基丙烯酸甲酯嵌段共聚物(PS-b-PMMA,简称SM)对聚甲基丙烯酸甲酯/聚甲基丙烯酸环己酯(PMMA/PCHMA)熔融共混体系的增容。采用透射电子显微镜(TEM)表征了SM和PMMA分子量对共混体系微观相形态和胶束迁移行为的影响。研究表明,SM分别在PMMA与PCHMA均聚物中形成不同结构的胶束,当SM在PMMA/PCHMA界面上形成“湿刷”时,SM在PCHMA相中形成的胶束才能迁移到PMMA相中。SM的加入改善了PMMA与PCHMA之间的相容性, 但其增容效果取决于SM的分子量。随着分散相PMMA分子量从19 kg/mol增加到39 kg/mol,PMMA粒子的平均粒径逐渐增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄林
杨艳琼
余峰
付甲
陈忠仁
关键词:  聚合物共混  嵌段共聚物  增容  形貌  胶束    
Abstract: Symmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA, SM) block copolymers were utilized to compatibilize poly(methyl methacrylate) and poly(cyclohexyl methacrylate) (PMMA/PCHMA) melt blends. The effect of molecular weight of SM and PMMA on the morphology of mixed blend and migration of micelle in the mixed phase was characterized by transmission electron microscope (TEM). The results showed that micelles with different morphology were formed when SM was blended with PMMA and PCHMA, respectively. When wet brushes were formed by the block copolymer at the interface of the mixed phase, the micelles generated in PCHMA phase were migrated to PMMA phase. SM improved the compatibility of PCHMA and PMMA, but the degree of compatibility mainly depended on the molecular weight of SM. With the increase of PMMA molecular weight from 19 kg/mol to 39 kg/mol, the average particle size of PMMA increased as well.
Key words:  polymer blend    block copolymer    compatibilization    morphology    micelle
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TQ320.1  
  TQ325.7  
基金资助: *国家自然科学基金(21274070);浙江省重点科技创新团队(2011R50001);宁波市“3315计划”高端创业创新团队(A类)(2012S0001);浙江省科技创新团队子项目(019-E01176124200)
通讯作者:  陈忠仁:通讯作者,男,1964年生,博士,教授,主要研究方向为聚合物分子设计与可控聚合、高分子聚集态结构调控与表征、有机纳米材料多尺度加工、高分子复合材料界面设计与调控、高分子疲劳失效机理与寿命预测 E-mail:chenzhongren@nbu.edu.cn   
作者简介:  黄林:男,1991年生,硕士研究生,主要研究方向为聚合物共混增容 E-mail:huanglin320@foxmail.com
引用本文:    
黄林, 杨艳琼, 余峰, 付甲, 陈忠仁. 嵌段共聚物增容共混聚合物的相形貌及胶束迁移行为研究*[J]. 《材料导报》期刊社, 2017, 31(4): 100-104.
HUANG Lin, YANG Yanqiong, YU Feng, FU Jia, CHEN Zhongren. Morphology and Micelle Migration Behavior of Melt Blend Compatibilized by Block Copolymer. Materials Reports, 2017, 31(4): 100-104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.022  或          http://www.mater-rep.com/CN/Y2017/V31/I4/100
1 Ruzette A V, Leibler L. Block copolymers in tomorrow′s plastics[J]. Nat Mater,2005,4(1):19.
2 国全. 聚合物共混改性原理与应用[M].北京:中国轻工业出版社,2007.
3 Huang C, Yu W. Role of block copolymer on the coarsening of morphology in polymer blend: Effect of micelles[J]. AIChE J,2015,61(1):285.
4 Chen W C, Lai S M, Liao Z C. Properties and preparation of olefin block copolymer/thermoplastic polyurethane blends[J]. J Appl Polym Sci,2016,133(29):43703.
5 Saengthaveep S, Jana S C, Magaraphan R. Correlation of viscosity ratio, morphology, and mechanical properties of polyamide 12/natural rubber blends via reactive compatibilization[J]. J Polym Res,2016,23(5):1.
6 Parameswaranpillai J, Dubey V K, Sisanth K S, et al. Tailoring of interface of polypropylene/polystyrene/carbon nanofibre composites by polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene[J]. Polym Test,2016,51:131.
7 Chang K, Macosko C W, Morse D C. Interfacial tension measurement and micellization in a polymer blend with copolymer surfactant: A false critical micelle concentration[J]. Macromolecules,2015,48(22):8154.
8 Castro L D C, Oliveira A D, Kersch M, et al. Effects of mixing protocol on morphology and properties of PA6/ABS blends compatibilized with MMA-MA[J]. J Appl Polym Sci,2016,133(27):43612.
9 Pu G, Luo Y, Lou Q, et al. Co-continuous polymeric nanostructures via simple melt mixing of PS/PMMA[J]. Macromol Rapid Commun,2009,30(2):133.
10 Lou Qianchuan. The effect of compatibilizer structures on the morphology of PMMA/PS blends[D]. Hangzhou:Zhejiang University,2006(in Chinese).
娄黔川. 增容剂的结构对PMMA/PS共混形态的影响[D]. 杭州:浙江大学,2006.
11 Li Xiaoting. Study on staining behavior of polymer by ruthenium tetroxide[D].Beijing: Beijing University of Chemical Technology,2007(in Chinese).
李小婷. RuO4染色技术在TEM中的应用——RuO4对聚合物的染色行为研究[D]. 北京:北京化工大学,2007.
12 Leibler L. Emulsifying effects of block copolymers in incompatible polymer blends[J]. Macromol Symp,1988,16(1):1.
13 Russell T P, Menelle A, Hamilton W A, et al. Width of homopolymer interfaces in the presence of symmetric diblock copolymers[J]. Macromolecules,1991,24(20):5721.
14 Fetters L J, Lohse D J, Richter D, et al. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties[J]. Macromolecules,1994,27(17):4639.
15 Wu Dang, Li Yuxue, Yu Qiang. Effects of the structure of PLA-b-PMMA on morphologies and properties of PC/PLA blends[J]. Chin Plast,2015(12):39(in Chinese).
吴挡,李玉雪,俞强. PLA-b-PMMA嵌段结构对PC/PLA共混形态和性能的影响[J]. 中国塑料,2015(12):39.
16 Lin B, Sundararaj U, Mighri F, et al. Erosion and breakup of polymer drops under simple shear in high viscosity ratio systems[J]. Polym Eng Sci,2003,43(4):891.
17 Pu G, Luo Y, Wang A, et al. Tuning polymer blends to coconti-nuous morphology by asymmetric diblock copolymers as the surfactants[J]. Macromolecules,2011,44(8):2934.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[3] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[4] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[5] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[6] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[7] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[8] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[9] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[10] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[11] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[12] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[13] 韩志勇, 史文新, 王者, 丁坤英, 程涛涛. HCPEB表面改性对镀铝CoCrAlY涂层显微组织及氧化性能的影响[J]. 材料导报, 2019, 33(14): 2392-2396.
[14] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[15] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed