Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 60-64    https://doi.org/10.11896/j.issn.1005-023X.2017.04.014
  材料研究 |
轧制ZK61镁合金板材晶粒长大行为*
赵而团1, 张立新2,3, 于晴2, 陈文振2
1 山东理工大学机械工程学院, 淄博 255049;
2 哈尔滨工业大学(威海)材料科学与工程学院, 威海 264209;
3 海军航空工程学院基础实验部, 烟台 264001
Grain Growth Kinetics of Rolled ZK61 Magnesium Alloy Sheet
ZHAO Ertuan1, ZHANG Lixin2,3, YU Qing2, CHEN Wenzhen2
1 School of Mechanical Engineering, Shandong University of Technology, Zibo 255049;
2 School of Material Science and Engineering, Harbin Institute of Technology, Weihai 264209;
3 Department of Fundamental Experiment, Naval Aeronautical Engineering Institute, Yantai 264001
下载:  全 文 ( PDF ) ( 1590KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对热轧的ZK61镁合金板材试样分别进行不同温度和不同保温时间的退火实验,利用金相显微镜(OM)观察显微组织,对晶粒尺寸进行分析和处理,并建立数学模型,系统研究了轧制ZK61镁合金的晶粒长大行为。研究结果表明,晶粒尺寸随着退火温度的升高与退火时间的延长而粗化,退火温度对晶粒长大的影响比退火时间的影响明显。对于ZK61镁合金在250~450 ℃温度区间的晶粒长大过程,其晶粒尺寸与加热时间的关系可用Beck方程Dn-D0n=kt描述,其中k=k0exp[-Qg/(RT)]。计算可得晶粒长大指数n为3.5,长大激活能Qg为45 kJ/mol。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵而团
张立新
于晴
陈文振
关键词:  ZK61镁合金  退火  晶粒长大  Beck方程    
Abstract: The annealing experiment of the hot-rolled ZK61 magnesium alloy plates was carried out under different annealing temperature and holding time. The microstructure was observed by optical microscope (OM), and the mathematical model for the relationship among the grain size, annealing temperature and holding time was established to investigate the grain growth behavior of hot-rolled ZK61 magnesium alloy. The results indicate that the increasing annealing temperature and the extending holding time can lead to the coarsened grain. In addition, annealing temperature apparently has a greater effect on the grain growth than holding time. The relationship between the grain size and holding time of ZK61 magnesium alloy in the temperature range of 250-450 ℃ can be well interpreted by the kinetic equation, Dn-D0n=kt, where k=k0exp[-Qg/(RT)]. And the calculated grain growth exponent (n) and the activation energy (Qg) are about 3.5 and 45 kJ/mol, respectively.
Key words:  ZK61 magnesium alloy    annealing    grain growth    Beck equation
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG166.4  
基金资助: *国家自然科学基金(51401064);山东省科技发展计划(2014GGX10211);山东省科技重大专项(2015ZDJQ02002)
通讯作者:  张立新:通讯作者,男,1972年生,硕士,工程师,研究方向为材料成型与控制 E-mail:zhanglixin2004@126.com 陈文振:通讯作者,男,1986年生,博士,讲师,研究方向为材料成型与控制 E-mail:nclwens@hit.edu.cn   
作者简介:  赵而团:男,1976年生,博士,讲师,研究方向为轻质合金及其精密热成形 E-mail:etzhao@sdut.edu.cn
引用本文:    
赵而团, 张立新, 于晴, 陈文振. 轧制ZK61镁合金板材晶粒长大行为*[J]. 《材料导报》期刊社, 2017, 31(4): 60-64.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.014  或          http://www.mater-rep.com/CN/Y2017/V31/I4/60
1 Liu Yu,Liu Jingan,Liu Zhiguo. Development feature and trend of magnesium processing industry and technology[J]. Nonferrous Met,2013,42(1):1(in Chinese).
刘煜,刘静安,刘志国. 镁合金加工工业及技术的发展特点与趋势[J].有色金属加工,2013,42(1):1.
2 Wang Saixiang, Zhang Datong, Zhang Wen, et al. Superplasticity of hot rolled MB8 magnesium alloy[J]. Trans Mater Heat Treat,2012,33(9):17(in Chinese).
王赛香,张大童,张文,等.热轧MB8镁合金的超塑性[J].材料热处理学报,2012,33(9):17.
3 Guo Fei, Zhang Dingfei, Yang Xusheng, et al. Microstructure and texture evolution of AZ31 magnesium alloy during large strain hot rolling[J]. Trans Nonferrous Met Soc China,2015,1:14.
4 Ji Wenfeng, Yan Hongge, Chen Jihua,et al. Effects of rolling temperature on microstructure and mechanical properties of large strain rolled AZ61 magnesium alloys sheets[J]. Mater Mechan Eng,2013(6):17(in Chinese).
嵇文凤,严红革,陈吉华,等. 轧制温度对大应变轧制AZ61镁合金板材组织与力学性能的影响[J]. 机械工程材料,2013(6):17.
5 Xiao Xinping, Wang Shuying, Cui Yongqiang. Study of ultra fine grain AZ91 sheet prepared by accumulative roll-bonding[J]. Hot Work Technol,2013,42(7):123(in Chinese).
肖心萍,王淑英,崔永强. 累积叠轧法制备纳米晶AZ91板材的研究[J].热加工工艺,2013,42(7):123.
6 Jiang Haitao, Duan Xiaoge, Cai Zhengxu, et al.Superplastic pro-cess and deformation mechanism of asymmetrically rolled AZ31 magnesium alloy[J]. J Mater Eng,2015(8):7(in Chinese).
江海涛, 段晓鸽, 蔡正旭, 等. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程,2015(8):7.
7 Gang Jianwei, Shi Binqing, Chen Rongshi, et al. Microstructure evolution and static recrystallization behavior of hot-rolled Mg-1Zn and Mg-1Y alloys during isothermal annealing[J]. Acta Metall Sin,2012,48(5):526(in Chinese).
刚建伟,施斌卿,陈荣石,等. 热轧Mg-1Zn和Mg-1Y退火组织演变及静态再结晶行为[J].金属学报,2012,48(5):526.
8 Yamamoto A, Kakishiro M, Ikeda M, et al. Grain refinement on AZ31 magnesium alloy by highly strained and annealed method[J]. Mater Sci Forum,2004,449-452:669.
9 Voort G V.Grain size measurement[M]//Mcall J L,Steele Jr J H.Practical applications of quantitative metallography.Philadelphia,USA:American Society for Testing and Materials,1984:85.
10 Atkimon H V. Theories of normal grain growth in pure single phase systems[J]. Acta Metall,1988,36(3):469.
11 Burke J E, Turnbull D. Recrystallization and grain growth[J]. Prog Met Phys,1952,3(11-15):220.
12 Konkova T, Mironov S, Korznikov A, et al. Grain growth during annealing of cryogenically-rolled Cu30Zn brass[J]. J Alloys Compd,2016,666:170.
13 Tripathi A, Samajdar I, Nie J F, et al. Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy[J]. Mater Cha-racterization,2016,114:157.
14 Frost H J, Ashby M F. Deformation-mechanism maps, the plasticity and creep of metals and ceramics[M]. New York: Pergamon Press,1982:43.
15 Gao P, Lu L, Lai M O. Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying[J]. Mater Res Bull,2001,36:981.
16 Maung A T, Li L, Lai M O. Kinetics of grain growth in nanocrystalline magnesium-based metal-metal composite synthesized by mechanical alloying[J]. Compos Sci Technol,2006,66:531.
17 Higgins G T. Grain-boundary migration and grain growth[J]. Mater Sci,1974,8(5):143.
18 Huang Y D, Froyen L. Recovery, recrystallization and grain growth in Fe3Al-based alloys[J]. Intermetallics,2002,10(5):473.
19 Moreau G, Cornet J A, Calais D. Acceleration de la diffusion chimique sous irradiation dans le systeme aluminium-magnesium[J]. J Nuclear Mater,1971,38(2):197.
[1] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[2] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[3] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[4] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[5] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[6] 彭晓文, 陈冷. 缓冲层Ta对退火Co/Cu/Co薄膜微观结构和界面互扩散的影响[J]. 材料导报, 2018, 32(22): 3931-3935.
[7] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[8] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[9] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[10] 闫海阔,郑晓平,王璠,包锦标,王市伟. 利用超临界CO2调控聚合物二元共混物的相形貌及力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2057-2061.
[11] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[12] 王运雷,张 杰,龚丽娟. 中间退火及成品退火速率对高压阳极铝箔微观组织的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1612-1617.
[13] 王潇梦, 尹晓刚, 蒋团辉, 刘卫, 龚维. 退火对PPR管材专用料结晶行为及抗低温性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 65-69.
[14] 李亚鹏, 李颖峰, 贺志荣, 郭从盛, 闫群民, 徐峰. 金属与半导体肖特基接触势垒模型及其载流子传输机制的研究进展[J]. 《材料导报》期刊社, 2017, 31(3): 57-62.
[15] 刘成红, 王均安, 熊邦汇, 张植权, 陈纪昌, 贺英. 立方织构Ni-Cr-Mo-W合金薄带及其性能*[J]. 《材料导报》期刊社, 2017, 31(20): 53-57.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed