Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 57-62    https://doi.org/10.11896/j.issn.1005-023X.2017.03.010
  材料综述 |
金属与半导体肖特基接触势垒模型及其载流子传输机制的研究进展
李亚鹏1, 李颖峰2, 贺志荣1, 郭从盛1, 闫群民2, 徐峰1
1 陕西理工大学材料科学与工程学院,汉中 723001;
2 陕西理工大学电气工程学院,汉中 723001;
Progress of Schottky Contact Model and Carrier Transport Mechanism at the Interface Between Metal and Semiconductor
LI Yapeng1, LI Yingfeng2, HE Zhirong1, GUO Congsheng1, YAN Qunmin2, XU Feng1
1 School of Materials Science and Engineering, Shaanxi Sci-Tech University, Hanzhong 723001;
2 School of Electrical Engineering, Shaanxi Sci-Tech University, Hanzhong 723001;
下载:  全 文 ( PDF ) ( 1245KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 肖特基结具有整流特性,在整流器和光电检测等电子元器件制造中有极其重要的应用,重点介绍了相关研究人员在金属与半导体肖特基接触势垒的形成机理、相关数学模型及其影响因素等方面的研究进展。有研究表明,肖特基势垒的形成主要是由于费米能级的钉扎,而费米能级钉扎则源于界面新相的形成或界面极化键的存在。同时,在肖特基势垒的相关模型中,热电子激发模型是目前应用最为广泛的、用于解释界面载流子传输机制的肖特基接触势垒模型。随着对接触界面载流子传输机制的深入研究,热发射-扩散、热场发射等载流子传输机制模型相继被研究者提出。另外,相关研究表明,快速退火处理可导致肖特基接触界面处的原子扩散、重排、新相生成等现象,对肖特基接触的稳定性产生重要影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚鹏
李颖峰
贺志荣
郭从盛
闫群民
徐峰
关键词:  肖特基结  势垒模型  载流子传输机制  接触界面  快速退火    
Abstract: Schottky contact was an important application in the field of the rectifier and photoelectric detection, due to its excellent rectifying behavior. In this paper, the formation mechanism, together with corresponding mathematical model and influencing factors of the Schottky contact between metal and semiconductor was reviewed in detail. The literatures showed that the formation of Schottky contact was caused by Fermi level pinning which was caused by phase formation and the existence of polarization at the interface region. Meanwhile, the thermionic emission model was the most widely used to explain the carrier transport mechanism at the interface of Schottky contact. With the further study on the carrier transport mechanism at the interface contact, the thermio-nic-diffusion and thermal field emission model were proposed by researchers. In addition, the related research exhibited that the fast annealing can lead to atoms diffusion, rearrangement and phase formation at the interface of the Schottky contact, which has an important influence on the stability of Schottky contact.
Key words:  Schottky junction    barrier model    carrier transport mechanism    contact interface    fast annealing
               出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TN362  
作者简介:  李亚鹏:男,1984年生,博士,讲师,从事功能材料制备及其器件性能研究 E-mail:liyp1984@126.com
引用本文:    
李亚鹏, 李颖峰, 贺志荣, 郭从盛, 闫群民, 徐峰. 金属与半导体肖特基接触势垒模型及其载流子传输机制的研究进展[J]. 《材料导报》期刊社, 2017, 31(3): 57-62.
LI Yapeng, LI Yingfeng, HE Zhirong, GUO Congsheng, YAN Qunmin, XU Feng. Progress of Schottky Contact Model and Carrier Transport Mechanism at the Interface Between Metal and Semiconductor. Materials Reports, 2017, 31(3): 57-62.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.010  或          http://www.mater-rep.com/CN/Y2017/V31/I3/57
1 Sze S M. Physics of semiconductor devices[M]. New York: Wiley,1981.
2 Schottky W. Halbleitertheorie der sperrschicht[J]. Die Naturwissenschaften,1938,52(26):843.
3 Mott N F. Note on the contact between a metal and an insulator or semiconductor[J]. Mathemat Proceed Cambridge Philosoph Soc,1938,34:568.
4 Bardeen J. Surface states and rectification at a metal-semiconductor contact[J]. Phys Rev,1947,71:717.
5 Cowley A M, Sze S M. Surface states and barrier height of metal-semiconductor systems[J]. J Appl Phys,1965,36(10):3212.
6 Freeouf J L, Woodall J M. Schotty barriers: An effective work function model[J]. Appl Phys Lett,1981,39(9):727.
7 Tung R T. Chemical bonding and Fermi level pinning at metal-semiconductor interface[J]. Phys Rev Lett,2000,84:6078.
8 Tung R T. Recent advance in schottky barrier concepts[J]. Mater Sci Eng R Reports,2001,35(1-3):1.
9 Sharma B L.Metal-semiconductor Schottky barrier junctions and their applications[M]. New York: Plenum,1984:191.
10 Resfa A, Smahi B Y, Menezla B R. Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator[J]. J Semiconductors,2011,32(12):58.
11 Rhoderick E H. Metal-semiconductor contacts[M].Oxford: Oxford University Press,1978.
12 Heine V. Theory of surface states[J]. Phys Rev A,1965,138(6):1689.
13 Tersoff J. Schottky barrier heights and the continuum of gap states[J]. Phys Rev Lett,1984,52:465.
14 Friedman D J, Lindau, Spicer W E. Noble-metal-CdTe interface formation[J] Phys Rev B,1988,37:731.
15 Tung R T. Electron transport at metal-semiconductor interfaces: General theory [J]. Phys Rev B,1992,45(23):13509.
16 Haruhiro O, Jia F F, Yasuo N, et al. Universal passivation effect of (NH4)2Sx treatment on the surface of Ⅲ-Ⅴ compound semiconductors[J]. Japanese J Appl Phys,1991,30:322.
17 Thomson R D, Tu K N. Schottky barrier of non-uniform contacts to n-typy and p-type silicon[J]. J Appl Phys,1982,53(6):4285.
18 Adachi S. Handbook on physical properties of semiconductor volume 2: Ⅲ-Ⅴ compound semiconductors [M].Boston: Kluwer Academic,2004.
19 Maffeis T G G, Simmonds M C, Clark S A, et al. Near ideal, high barrier, Au-nGaN Schottky contacts [J]. J Phys D,2000,33(20):115.
20 Zaremba G, Adamus Z, Jung W, et al. The role of deep level traps in barrier height of 4H-SiC Schottky diode[J]. Mater Sci Eng B,2012,177(15):1323.
21 Mênch W. Role of virtual gap states and defects in metal-semiconductor contacts [J]. Phys Rev Lett,1987,58(12):1260.
22 Wahi A K, Miyano K, Carey G P, et al. Band bending at Al, In, Ag, and Pt interfaces with CdTe and ZnTe (110)[J]. J Vacuum Sci,1990,8(3):1926.
23 Schaeffer J K, Samavedam S B, Liang Y, et al. Contributions to the effective work function of platinum on hafnium dioxide[J]. Appl Phys Lett,2004,85(10):1826.
24 Bai X X, Jie W Q, Zha G Q, et al. Interface dipole and Schotty bar-rier formation at Au/CdZnTe(111)A interfaces[J]. J Phys Chem C,2010,114:16426.
25 Chand S. On the intersecting behaviour of current-voltage characteri-stics of inhomogeneous Schottky diodes at low temperatures[J] . Semiconductor Sci Technol,2004,19(1):82.
26 Oyama S, Hashizume T, Hasegawa H. Mechanism of current lea-kage through metal/n-GaN interfaces[J]. Appl Surf Sci,2002,190(1-4):322.
27 Kolkovsky V, Scheffler L, Hieckmann E, et al. Schottky contacts on differently grown n-type ZnO single crystals[J]. Appl Phys Lett,2011,98:082104-1.
28 Liu Z Y, Saulys D A, Kuech T F. Improved characteristics for Au/n-GaSb Schottky contacts through the use of a nonaqueous sulfide-based passivation[J]. Appl Phys Lett,2004,85(19):4391.
29 Shao Z G, Chen D J, Liu B, et al. Current transport mechanisms of InGaN metal-insulator-semiconductor photodetectors[J]. J Vacuum Sci,2011,29(5):051201-3.
30 Yu A Y C. Electron tunneling and contact resistance of metal silicon contact barriers[J]. Solid State Electron,1970(13):239.
31 Padovani F A.Semiconductors and semimetals[M]. New York: Aca-demic Press,1971.
32 Janardhanam V,Park Y K,Ahn K S, et al. Carrier transport mecha-nism of Se/n-type Si Schottky diodes[J]. J Alloys Compd,2012,534:37.
33 Faraz S M, Willander M, Wahab Q. Interface state density distribution in Au/n-ZnO nanorods Schottky diodes[J]. IOP Conference Series Mater Sci Eng,2012,34(1):12006.
34 Brillson L J, Dong Y F, Tuomisto F, et al. Interplay of native point defects with ZnO Schottky barriers and doping[J]. J Vacuum Sci,2012,30(5):050801.
35 Song S, Kim D H, Kang D, et al. Electrical characteristics of schottky contacts to p-type (001) GaP: Understanding of carrier transport mechanism[J]. J Electron Mater,2016(10):1.
36 Bethe H A. Theory of boundary layer of crystal rectifiers[J]. MIT Radiation Lab Rep,1942,DOI:10.114219789814503464-0049.
37 Gurumurthy S,Bhat H L,Kumar V. Excellent rectifying characteristics in Au/n-CdTe diodes upon exposure to rf nitrogen plasma[J]. Semiconductor Sci Technol,1999,14(10):909.
38 Van Merihaeghe R L, Van de walle, Laflère W H, et al. On the relationship between the surface composition of the substrate and the Schottky barrier height in Au/n-CdTe contacts[J]. J Appl Phys,1991,70(4):2200.
39 Mathew X, Pantoja Enriquez J, Sebastian P J, et al. Charge transport mechanism in a typical Au/CdTe Schottky diode[J]. Solar Energy Mater Solar Cells,2000,63(4):355.
40 Card H C, Rhoderick E H. Studies of tunnel MOS diodes Ⅰ. Interface effects in silicon Schottky diodes[J]. J Phys D,1971,10(4):1589.
41 Singh A, Reinhardt K C, Anderson W A. Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions[J]. J Appl Phys,1990,68(7):3475.
42 Wang W P, Davidson J L, Gurbuz Y, et al. Temperature depen-dence and effect of series resistance on the electrical characteristics of a polycrystalline diamond metal-insulator-semiconductor diode[J]. J Appl Phys,1995,78(2):1101.
43 Divigalpitiya W M R. Temperature dependence of the photovoltaic characteristics of silicon MIS solar cells[J]. Solar Energy Mater,1989,18(5):253.
44 Cova P, Singh A. Temperature dependence of I-V and C-V characteristics of Ni/nCdF2 Schottky barrier type diodes[J]. Solid-State Electronics,1990,33(1):11.
45 Gülnahar M, Efeogˇlu H. Double barrier nature of Au/p-GaTe Schottky contact: Linearization of Richardson plot[J]. Solid-State Electroncs,2009,53:972.
46 Chattopadhyay P, Daw A N. On the current transport mechanism in a metal-insulator-semiconductor (MIS) diode[J]. Solid-State Electroncs,1986,29:555.
47 Hatori K, Torn Y. A new method to fabricate Au/n-type InP Schottky contacts with an interfacial layer[J]. Solid-State Electroncs,1991,34(5):527.
48 Dokme I, Altindal S. Temperature-dependent current-voltage chara-cteristics of the Au/n-InP diodes with inhomogeneous Schottky barrier height[J]. Semiconductor Sci Technol,2006,21:1053.
49 Chin V W L, Green M A V, Storey J W. Current transport mechanisms studied by I-V-T and IR photoemission measurements on a P doped Pt/Si Schottky diode[J]. Solid State Electroncs,1993,36(1):1107.
50 Jang J S, Donghwan K, Seong T Y. Schottyky barrier characteristics of Pt contacts to n-type InGaN[J]. J Appl Phys,2006,99(7):136.
51 Ayyildiz E, Cetin H, Horváth Zs J. Temperature dependent electrical characteristics of Sn/P-Si schottky diodes [J]. Appl Surf Sci,2005,252:1153.
52 Sullivan J P, Tung R T, Pinto M R, et al. Electron transport of inhomogeneous Schottky barriers: A numerical study[J]. J Appl Phys,1991,70(12):7403.
53 Fowell A E, Williams R H, Richardson B E, et al. The Au/CdTe interface: An investigation of electrical barriers by ballistic electron emission microscopy[J]. Semiconductor Sci Technol,1990,5(4):348.
54 Chen Z T, Fujita K, Ichikawa J, et al. Schottky barrier height inhomogeneity-induced deviation from near-ideal Pd/InAlN schottky contact[J]. IEEE Electron Device Lett,2011,32(5):620.
55 Werner J H. Gttler H H. Barrier inhomogeneities at Schottky contacts[J] . J Appl Phys,1991,69(3):1522.
[1] 尚钰东, 陈秀华, 李绍元, 马文会, 王月春, 向富维. 石墨烯/n-Si肖特基结太阳能电池的性能限制因素及效率提升方法*[J]. 《材料导报》期刊社, 2017, 31(3): 123-129.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed