Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11053-11063    https://doi.org/10.11896/cldb.19040060
  材料与可持续发展(二)——材料绿色制造与加工 |
纤维增强复合材料与铝合金自冲铆接研究进展
刘洋1, 庄蔚敏1, 解东旋2
1 吉林大学汽车仿真与控制国家重点实验室,长春 130022
2 一汽-大众汽车有限公司,长春130011
Research Progress on Self-piercing Riveting of Fiber Reinforced Polymers and Aluminium Alloy Sheets
LIU Yang1, ZHUANG Weimin1, XIE Dongxuan2
1 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
2 FAW-Volkswagen Auto. Co., Ltd., Changchun 130011, China
下载:  全 文 ( PDF ) ( 10284KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为降低汽车尾气排放和提高能源的有效利用率,车身轻量化是汽车设计制造的发展趋势。近年来,铝合金、镁合金、钛合金和纤维增强复合材料等新轻型材料因具有低密度和较高的比强度及比刚度而被广泛应用于汽车及航空航天制造业。纤维增强复合材料具有高比模量、优异的耐腐蚀性、热物理性能和疲劳性能,同时还具备阻尼减震和可设计性强等优势,在汽车行业中的应用规模不断扩大。
   随着轻质材料在车身中的进一步应用,多材料混合车身结构对连接技术提出挑战。电阻点焊、激光焊接、传统铆接和粘接是车身常用的连接技术,随着全铝车身及混合材料车身结构的应用,自冲铆接、压印连接和搅拌摩擦焊等新型连接工艺得到推广和应用。纤维增强复合材料在车身中常与铝合金进行连接,自冲铆作为一种新轻型板材连接技术,为复合材料和金属的连接提供了解决方案。纤维增强复合材料在自冲铆过程中,铆接区域会遭受损伤,从而影响接头的外观和力学性能。因此,复合材料的损伤及其对接头性能的影响是车企关注的核心问题。
   目前,对复合材料自冲铆接的研究主要集中在碳纤维复合材料、玻璃纤维复合材料和铝合金的连接,所研究复合材料的基体分为环氧树脂和聚酰胺,增强纤维的结构分为短切型、编织型和单向带等。由于环氧树脂为一种热固性基体,环氧树脂基纤维增强复合材料只能作为上板进行自冲铆接;而对于延展性较好的热塑性树脂基复合材料可以作为上板或下板进行连接。接头的成形工艺影响复合材料的损伤程度,采用圆头铆钉、增大铆接速度及控制钉头高度高于上板表面均能减小复合材料在自冲铆过程中的损伤,进而使接头获得更优的力学性能。
   本文归纳了复合材料和铝合金自冲铆接的研究进展,从接头的成形质量、铆接损伤、力学性能、失效形式和数值模拟研究等方面进行阐述,并展望了相关研究思路和方法,以期为纤维增强复合材料在车身中的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洋
庄蔚敏
解东旋
关键词:  纤维增强复合材料  自冲铆  铝合金  车身轻量化    
Abstract: To reduce vehicle exhaust emissions and improve energy efficiency, lightweight automotive bodies are a mainstream trend of automotive design and manufacture. In recent years, new lightweight materials such as aluminium alloys, magnesium alloys, titanium alloys and fiber reinforced polymers (FRP) have been widely used in automotive and aerospace industries due to their low density, high specific strength and stiffness. FRP have high specific modulus, corrosion resistance, excellent thermophysical and fatigue properties, as well as the advantages of damping and easy to design, and the application of FRP in automobiles is continually expands.
With the application of light materials in automotive bodies, the multi-material structures put challenges to the joining technology. Resistance spot welding, laser welding, traditional riveting and adhesive bonding are commonly joining technologies used for automotive bodies. With the application of aluminium body and multi-material body, new joining technologies such as self-piercing riveting (SPR), mechanical clinching and friction stir welding have been popularized and applied. In engineering applications, FRP are often connected with aluminium alloys. SPR, as a new technology for joining light sheets, provides a solution for the connection between composites and metals. The damage of FRP in riveting region will be induced during SPR process, which affects the appearance and mechanical properties of the joints. Therefore, the damage of composite materials and its effect on joint performance are the core issues concerned by automotive enterprises.
At present, the research on SPR of composite materials mainly focuses on the joining of carbon fiber composites, glass fiber composites with aluminium alloys. The matrix of the FRP studied is epoxy resin and polyamide. The tissue of the reinforced fibers can be divided into short-cut type, braided type and unidirectional type. As a kind of thermosetting matrix, epoxy resin-base fiber reinforced composites can only be placed as upper sheets to achieve effective joining, while thermoplastic resin matrix composites with better ductility can be used as upper or lower sheet. The for-ming process of the joints affects the damage degree of the composite materials. The use of rivet with the round head, increasing riveting speed and controlling the height of the rivet head higher than the surface of the upper sheet can reduce the damage of the composite materials, and lead to the joints obtain better mechanical properties.
This review offers a retrospection of the research efforts with respect to the SPR of composite materials and aluminium alloys. The forming quality, riveting damage, mechanical properties, failure modes and numerical simulation of the joints are discussed, and the prospect of related research ideas and methods are suggested in order to provide a reference for the application of fiber reinforced polymers in automobive body.
Key words:  fiber reinforced polymers    self-piercing riveting    aluminium alloy    lightweighting of automotive body
                    发布日期:  2020-05-13
ZTFLH:  TH131.1  
基金资助: 国家自然科学基金(51775227;51375201);国家重点研发计划项目(2016YFB0101601);吉林省省校共建计划专项项目(SXGJSF2017-2-1-5)
通讯作者:  zhuangwm@jlu.edu.cn   
作者简介:  刘洋,吉林大学汽车工程学院博士研究生,在庄蔚敏教授的指导下进行研究。目前主要从事车身结构轻量化设计的相关研究工作。近年来,在新轻型板材连接领域发表论文10余篇。
庄蔚敏,吉林大学汽车工程学院教授、博士研究生导师。2006年7月在吉林大学汽车工程学院车辆工程专业获得博士学位,2007—2008年在英国帝国理工学院进行访问研究,主要从事汽车车身轻量化技术的相关研究工作。近年来,在高强钢/铝合金温热成形和异种材料连接技术领域发表论文40余篇。
解东旋,一汽-大众汽车有限公司技术开发部产品工程师。2012年6月本科毕业于吉林大学汽车工程学院,2017年12月在吉林大学车身工程专业获得博士学位,主要研究方向为车身结构设计与优化、有限元分析和金属成形技术。
引用本文:    
刘洋, 庄蔚敏, 解东旋. 纤维增强复合材料与铝合金自冲铆接研究进展[J]. 材料导报, 2020, 34(11): 11053-11063.
LIU Yang, ZHUANG Weimin, XIE Dongxuan. Research Progress on Self-piercing Riveting of Fiber Reinforced Polymers and Aluminium Alloy Sheets. Materials Reports, 2020, 34(11): 11053-11063.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040060  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11053
1 Zhang J Y, Jiang Z, Li Z Y, et al. Automotive Engineering, 2018, 40(10), 1166 (in Chinese).
张君媛, 姜哲, 李仲玉, 等. 汽车工程, 2018, 40(10), 1166.
2 Song Y L, Yang L, Guo W, et al. Materials Reports A: Review Papers, 2016, 30(17), 16 (in Chinese).
宋燕利, 杨龙, 郭巍,等. 材料导报:综述篇, 2016, 30(17), 16.
3 González C, Vilatela J J, Molina-aldareguía J M, et al. Progress in Materials Science, 2017, 89, 194.
4 Zhang D W, Zhang Q, Fan X G, et al. Rare Metal Materials and Engineering, 2019, 48(1), 44.
5 Pramanik A, Basak A K, Dong Y, et al. Composites: Part A, 2017, 101, 1.
6 Lambiase F, Paoletti A. Journal of Manufacturing Processes, 2018, 31, 812.
7 He X C, Pearson I, Young K.Journal of Materials Processing Technology, 2008, 199(1), 27.
8 Zhuang W M, Liu Y, Wang P Y, et al.Journal of Jilin University(Engineering and Technology Edition), 2019(6),1836(in Chinese).
庄蔚敏, 刘洋, 王鹏跃, 等. 吉林大学学报(工学版), 2019(6),1836.
9 Liu Y, Zhuang W M, Shi H D. Materials Reports A: Review Papers, 2019, 33(11), 1825 (in Chinese).
刘洋, 庄蔚敏, 施宏达. 材料导报:综述篇, 2019, 33(11), 1825.
10 Zhang J, He X C, Ding W Y.Ordnance Material Science and Enginee-ring, 2018, 288, 41(3), 54 (in Chinese).
张杰, 何晓聪, 丁文有. 兵器材料科学与工程, 2018, 288, 41(3), 54.
11 Kang J, Rao H, Zhang R, et al. IOP Conference Series: Materials Science and Engineering, 2016, 137, 012025.
12 Fratini L, Ruisi V F. International Journal of Advanced Manufacturing Technology, 2009, 43(1-2), 61.
13 Ding W Y, He X C, Liu J M, et al. Science Technology and Engineering, 2018, 18(25), 143 (in Chinese).
丁文有, 何晓聪, 刘佳沐, 等. 科学技术与工程, 2018, 18(25), 143.
14 Deng C. Research on riveting process and performance of sandwich structures self-piercing riveted joints. Master's Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese).
邓聪. 三明治结构自冲铆接头成形工艺研究. 硕士学位论文, 昆明理工大学, 2018.
15 Zhang J, Yang S. Journal of Composite Materials, 2015, 49(12), 1493.
16 Wu X D, Wang M, Kong L, et al. Machinery Design & Manufacture,2017(2), 210 (in Chinese).
吴小丹,王敏,孔谅,等. 机械设计与制造, 2017(2), 210.
17 Liang J, Jiang H, Zhang J, et al. Archives of Civil and Mechanical Engineering, 2019, 19, 240.
18 Meschut G, Gude M, Augenthaler F, et al. Procedia CIRP, 2014, 18, 186.
19 Gay A, Roche J, Lapeyronnie P, et al. International Journal of Damage Mechanics, 2017, 26(8), 1127.
20 Rao H M, Kang J, Huff G, et al.International Journal of Fatigue, 2018, 113, 11.
21 Franco G D, Fratini L, Pasta A, et al. International Journal of Material Forming, 2010, 3(1 Supplement), 1035.
22 Rao H M, Kang J, Huff G, et al. SAE International Journal of Materials and Manufacturing, 2017, 10(2), 167.
23 Zhao L, He X C, Xing B Y, et al. Journal of Materials Processing Technology, 2017, 249, 246.
24 Han L, Chrysanthou A, Young K W, et al. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(8), 646.
25 Li D Z, Chrysanthou A , Patel I, et al. The International Journal of Advanced Manufacturing Technology, 2017, 92, 1777.
26 Franco G D, Fratini L, Pasta A. Materials & Design, 2012, 35, 342.
27 Gay A, Lefebvre F, Bergamo S, et al. International Journal of Fatigue, 2016, 83, 127.
28 Li Y B, Ma Y W, Lou M, et al. Journal of Mechanical Engineering, 2016, 52(24), 1 (in Chinese).
李永兵, 马运五, 楼铭, 等. 机械工程学报, 2016, 52(24), 1.
29 Lei L, He X C, Zhao D S, et al. Thin-Walled Structures, 2018, 131, 393.
30 Franco G D, Fratini L, Pasta A. International Journal of Adhesion and Adhesives, 2013, 41, 24.
31 Lu J W,He X C,Ding W Y, et al. Ordnance Material Science and Engineering, 2019, 42(2), 77 (in Chinese).
卢嘉伟, 何晓聪, 丁文有, 等. 兵器材料科学与工程, 2019, 42(2) , 77.
32 Fiore V, Alagna F, Galtieri G, et al. Composites: Part B, 2013, 45, 911.
33 Franco G D, Fratini L, Pasta A. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2012, 226(3), 230.
34 Mandel M, Kruger L. Materials Today: Processings, 2015, 2(S1), S131.
35 Mandel M, Kruger L. Materialwissenschaft Und Werkstofftechnik, 2012, 43(4), 302.
36 Mandel M, Kruger L. Materialwissenschaft Und Werkstofftechnik, 2014, 45(12), 1123.
37 Mandel M, Kruger L. Corrosion Science, 2013, 73, 172.
38 Liang J W, Li X, Wang F J, et al. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(5), 678 (in Chinese).
梁佳炜, 黎雄, 王凤江, 等. 江苏科技大学学报(自然科学版), 2018, 32(5), 678.
39 Li X, Rao Z H, Wang F J, et al.Journal of Central South University (Science and Technology), 2018, 49(10), 2447.
黎雄, 饶政华, 王凤江, 等. 中南大学学报(自然科学版), 2018, 49(10), 2447.
40 Amro E, Kouadri-Henni A. In: Proceedings of the 21st International Esaform Conference on Material Forming: Esaform 2018. Palermo, 2018, pp. 050001-1.
41 Welf-Guntram D, Reinhard M, Raik G, et al. Key Engineering Mate-rials, 2013, 554-557, 1045.
42 Hirsch F, Müller S, Machens M, et al. Journal of Materials Processing Technology, 2017, 241, 164.
[1] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[2] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[3] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[4] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[5] 汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
[6] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[7] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[8] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[9] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[10] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[11] 刘伟东, 薄旭盛, 何成. 基于轻量化材料防撞梁的低速碰撞性能研究[J]. 材料导报, 2019, 33(Z2): 468-472.
[12] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[13] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[14] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[15] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed