Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 37-40    
  无机非金属及其复合材料 |
底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究
于海群1,2
1 浙江昀丰新材料科技股份有限公司,金华 321015
2 上海昀丰光电技术有限公司,上海 201201
Simulation and Experimental Research on the Effect of Bottom Shield Structure on the Large-size Sapphire Crystal Growth
YU Haiqun1,2
1 Zhejiang Yunfeng New Material Technology Co., Ltd., Jinhua 321015
2 Shanghai Yunfeng Optoelectronictech Co., Ltd., Shanghai 201201
下载:  全 文 ( PDF ) ( 4647KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 底部保温结构决定了坩埚底部径向温差的大小,底部径向温差的大小决定了晶体收尾生长的形态,合适的底部径向温差可以保证良好的晶体收尾生长,抑制界面翻转。利用CFD软件模拟底部保温结构对长晶功率、坩埚底部径向温差及界面凸出度的影响。结果表明,利用分体式底部保温结构,在扩肩及收尾阶段均可以获得最小的长晶功率、最大的底部径向温差、最大的晶体界面凸出度。依据优化的结果,采用分体式底部保温结构进行长晶实验,生长出的晶体底部表面呈现年轮状,晶体品质良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于海群
关键词:  蓝宝石  保温屏  数值模拟  实验研究    
Abstract: The radial temperature difference at the bottom of crucible is determined by the bottom shield structure. The morphology of crystal tailing growth is determined by the radial temperature difference at the bottom of crucible. The suitable radial temperature difference at the bottom of crucible can ensure good crystal tail growth and inhibit interface inversion. CFD software was used to simulate the effects of different bottom shield structure on the crystal power, the radial temperature difference at the bottom of crucible and the convexity. The results show that the smallest crystal power, the largest radial temperature difference at the bottom and the largest convexity can be obtained by using the splitting bottom shield structure whenever the shouldering and the tailing stage. According to the optimized results, the splitting bottom shield structure was used to carry out the experiment of crystal growth. The bottom surface of the crystal showed annual rings and the crystal quality was good.
Key words:  sapphire    heat shield    numerical simulation    experimental research
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O78  
作者简介:  于海群,上海昀丰光电技术有限公司,中级工程师。2012年6月毕业于江苏大学,工学博士,同年加入上海昀丰光电技术有限公司至今。主要从事蓝宝石晶体生长的热场设计及长晶工艺研发。在国内外重要期刊发表文章10多篇,申报发明专利10余项。hiqun@sina.cn
引用本文:    
于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
YU Haiqun. Simulation and Experimental Research on the Effect of Bottom Shield Structure on the Large-size Sapphire Crystal Growth. Materials Reports, 2019, 33(z1): 37-40.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/37
1 许承海, 杜善义, 孟松鹤, 等. 人工晶体学报,2007,36(6),1261.
2 汪传勇, 左然, Andrey Smirnov, 等. 人工晶体学报,2011,40(1).83.
3 许承海.SAPMAC法大尺寸蓝宝石晶体生长的模拟分析与应用研究.博士学位论文, 哈尔滨工业大学, 2007.
4 杨轶涵, 李进, 王长春, 等. 人工晶体学报,2017,46(8),1430.
5 陈洪建, 刘维娜, 李日, 等. 硅酸盐学报,2016,44(4),532.
6 刘方方, 左然, 苏文佳. 人工晶体学报,2015,44(10),2898.
7 闵乃本.晶体生长的物理基础,上海科学技术出版社,1982.
8 王凯, 郭余庆, 王鸣, 等.人工晶体学报,2015,44(8),2084.
9 Chen J C, Lu C W. Journal of Crystal Growth,2004,266(1),239.
[1] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[2] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[3] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[4] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[5] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[6] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[7] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[8] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[9] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[10] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[11] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[12] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[13] 胡扬轩,邓朝晖,万林林,李 敏. 用于蓝宝石材料加工的新型超精密抛光技术及复合抛光技术研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1452-1458.
[14] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[15] 席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed