Abstract: The firstprinciples calculations based on density functional theory (DFT) were conducted to explore the adsorption structures, electronic pro-perties, and diffusion behaviors of Na on pristine graphene (PG) and XC3 (X=B, N and P) doping graphene surfaces in detail. The computational results showed that the P-doping damaged the planar surface structure of PG due to the considerable elongation of P-C bond, while the impact of B- and N-doping on PG was slight, with imperceptible variations in B-C and N-C bond. Consequently, BC3 and NC3 could still maintain the plane structure of PG, and there was no difference between positive and negative sides. The electronic structure calculations presented that PG is a semi-metallic material, while BC3 and NC3 materials are p- and n-type semiconductors, respectively. The biggest difference lay in the metallic nature of PC3 material. However, all the XC3 (X=B, N and P) doping graphene materials exhibit metallic characte-ristics after Na adsorption. It was discovered from further calculations that PC3 and BC3 doping could enlarge adsorption energy, which contributed to the Na storage capacity of graphene. In addition, the study of diffusion mechanism of Na on the PG and XC3 (X=B, N and P) indicated that the P-doping material (PC3) possessed the lowest diffusion barrier of 0.081 5 eV. Therefore, PC3 material is beneficial to the transference and diffusion of Na, and it is a potential anode material for sodium-ion batteries.
杨绍斌, 单学颖, 李思南, 唐树伟, 沈丁, 孙闻. Na在XC3(X=B,N,P)掺杂石墨烯表面吸附与扩散行为的 第一性原理研究[J]. 材料导报, 2019, 33(10): 1640-1645.
YANG Shaobin, SHAN Xueying, LI Sinan, TANG Shuwei, SHEN Ding, SUN Wen. Insight into the Adsorption and Diffusion Behaviors of Na on XC3 (X=B, N and P) Doping Graphene Surfaces: a First Principle Study. Materials Reports, 2019, 33(10): 1640-1645.
1 Zhang L C, Chen C H. Progress in Chemisty, 2011, 23(2-3), 275 (in Chinese). 张临超, 陈春华.化学进展, 2011, 23(2-3), 275. 2 Yang S B, Li S N, Sun W, et al. Journal of Functional Materials, 2016, 47(8), 8020 (in Chinese). 杨绍斌, 李思南, 孙闻, 等.功能材料, 2016, 47(8), 8020. 3 Guo J Z, Wan F, Wu X L, et al. Journal of Molecular Science, 2016, 32(4), 265 (in Chinese). 郭晋芝, 万放, 吴兴隆, 等.分子科学学报, 2016, 32(4), 265. 4 Li H, Wu C, Wu F, et al. Acta Chimica Sinica, 2014, 72(1), 21 (in Chinese). 李慧, 吴川, 吴锋, 等. 化学学报, 2014, 72(1), 21. 5 Zhang S W, Zhang J, Wu S D, et al. Acta Chimica Sinica, 2017, 75(2), 163 (in Chinese). 张思伟, 张俊, 吴思达, 等. 化学学报, 2017, 75(2), 163. 6 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183. 7 Wang Y X, Chou S L, Liu H K, et al. Carbon, 2013, 57, 202. 8 Qin G, Zhang X, Wang C. Journal of Materials Chemistry A, 2014, 2(31), 12449. 9 Wu L, Lu H, Xiao L, et al. Journal of Power Sources, 2015, 293, 784. 10 Ling C, Mizuno F. Physical Chemistry Chemical Physics, 2014, 16(22), 10419. 11 Yao L H, Cao M S, Yang H J, et al. Computational Materials Science, 2014, 85, 179. 12 Wang C, Jia Y J, Liu Z C, et al. Industrial Catalysis, 2014, 22(7), 510 (in Chinese). 王灿, 贾银娟, 刘志成, 等. 工业催化, 2014, 22(7), 510. 13 Ma G Z. Sythesis and supercapacitor properties of P-doped graphene. Master’s Thesis, Harbin Institute of Technology, China, 2016 (in Chinese). 马贵智. 磷掺杂石墨烯的制备及其超级电容器性能研究. 硕士学位论文, 哈尔滨工业大学, 2016. 14 Sun J, Lee H W, Pasta M, et al. Nature Nanotechnology, 2015, 10(11), 980. 15 Mattsson A E, Schultz P A, Desjarlais M P, et al. Modelling and Simulation in Materials Science and Engineering, 2004, 13(1), R1. 16 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758. 17 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865. 18 Perdew J P, Parr R G, Levy M, et al. Physical Review Letters, 1982, 49(23), 1691. 19 Vanderbilt D. Physical Review B, 1990, 41(11), 7892. 20 Cheng L, Wang D X, Zhang Y, et al. Acta Physica Sinica, 2018, 67(4), 47101 (in Chinese). 程丽, 王德兴, 张杨, 等.物理学报, 2018, 67(4), 47101. 21 Xiong H H, Liu Z, Zhang H H, et al. Acta Physica Sinica, 2017, 66(16), 168101 (in Chinese). 熊辉辉, 刘昭, 张恒华, 等. 物理学报, 2017, 66(16), 168101. 22 Han H Y. First-principles studies of structural, electronic and hydrogen storage properties of layered CxN Compounds. Master’s Thesis, Henan Polytechnic University, China, 2011 (in Chinese). 韩海燕. 层状CxN化合物结构、电子性质和储氢性能的第一性原理研究. 硕士学位论文, 河南理工大学, 2011. 23 Hu Q K. Synthesis and first-principles study of layered BCx compounds. Ph.D. Thesis, Yanshan University, China, 2008 (in Chinese). 胡前库. 层状BCx化合物的合成与第一性原理研究.博士学位论文, 燕山大学, 2008. 24 Rani P, Jindal V K. RSC Advances, 2013, 3(3), 802. 25 Denis P A. Chemical Physics Letters, 2010, 492(4-6), 251. 26 Liu X J, Jia Y, Jiang Y J, et al. Journal of Functional Materials, 2015, 46(7), 7056 (in Chinese). 刘学杰, 贾颖, 姜永军, 等.功能材料, 2015, 46(7), 7056. 27 Datta D, Li J, Shenoy V B. ACS Applied Materials & Interfaces, 2014, 6(3), 1788. 28 Chan K T, Neaton J B, Cohen M L. Physical Review B, 2008, 77(23), 235430. 29 Qiao L, Qu C Q, Zhang H Z, et al. Diamond and Related Materials, 2010, 19(11), 1377. 30 Tian W, Yuan P F, Yu Z L, et al. Acta Physica Sinica, 2014, 64(4), 46102 (in Chinese). 田文, 袁鹏飞, 禹卓良, 等.物理学报, 2014, 64(4), 46102. 31 Nobuhara K, Nakayama H, Nose M, et al. Journal of Power Sources, 2013, 243, 585.