Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2351-2354    https://doi.org/10.11896/j.issn.1005-023X.2018.14.005
  无机非金属及其复合材料 |
冷速对液态GaAs快速凝固过程中微观结构的影响
陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆
贵州大学大数据与信息工程学院,贵阳 550025
Effect of Cooling Rates on Microstructures During Solidification of Liquid GaAs
CHEN Qian, CHEN Qing, LIANG Yongchao, GAO Tinghong, GUO Xiaotian, TIAN Ze’an, XIE Quan, HE Fan
College of Big Data and Information Engineering, Guizhou University, Guiyang 550025
下载:  全 文 ( PDF ) ( 4905KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分子动力学方法对液态GaAs在六种不同冷速下的快速凝固过程进行模拟,并采用双体分布函数、平均配位数、键角分布函数、二面角分布和可视化等方法对凝固过程的微观结构变化进行分析。结果表明:凝固过程中部分As原子发生偏聚,冷却后形成γ砷(简单立方结构As8),当冷速为1×1010 K/s和2×1010 K/s时,富Ga区域主要是以闪锌矿和纤锌矿为主的晶体结构;当冷速高于5×1010 K/s时,富Ga区域形成以Ga-Ga-Ga和Ga-As-Ga三元环结构为主的非晶无规网络结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈茜
陈庆
梁永超
高廷红
郭笑天
田泽安
谢泉
何帆
关键词:  液态GaAs  凝固过程  冷却速率  微观结构    
Abstract: A simulation study was performed for the effects of different cooling rates on microstructure during solidification of liquid GaAs by means of molecular dynamics method. Through the pair distribution function, the average coordination number, the bond angle distribution function, the dihedral angle distribution and visualization method were used to analyze the variations of microstructure during the solidification process. Results show that part of the As atoms converged and formed γ-As(simple cubic structure As8), when the cooling rate is 1×1010 K/s and 2×1010 K/s, the Ga enrichment area are mainly composed of zinc-blende and wurtzite crystal structure; when the cooling rate is higher than 5×1010 K/s, the Ga enrichment area are mainly formed of amorphous structure to give priority to the structure of Ga-As-Ga and Ga-Ga-Ga ternary ring.
Key words:  liquid GaAs    solidification process    cooling rate    microstructure
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TN304.02  
基金资助: 贵州省科技计划项目(黔科合平台人才[2017]5788号);贵州省科技厅、贵州大学联合资金项目(黔科合LH字[2016]7430);国家自然科学基金(61264004;51761004;51661005);贵州省科技厅科学技术基金(J[2015]2050)
作者简介:  陈茜:女,1981年生,博士,副教授,研究方向为新型光电子材料与器件 E-mail:xchen@gzu.edu.cn 陈庆:男,1991年生,硕士研究生,研究方向为半导体分子动力学模拟 E-mail:2269072800@qq.com
引用本文:    
陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
CHEN Qian, CHEN Qing, LIANG Yongchao, GAO Tinghong, GUO Xiaotian, TIAN Ze’an, XIE Quan, HE Fan. Effect of Cooling Rates on Microstructures During Solidification of Liquid GaAs. Materials Reports, 2018, 32(14): 2351-2354.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.005  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2351
1 Yao Yanping. Studies on amorphous Ⅲ-Ⅴ semiconductor films for detectors application[D]. Changchun: Changchun University of Science and Technology,2009(in Chinese).
么艳平.Ⅲ-Ⅴ族非晶态探测器材料研究[D].长春:长春理工大学,2009.
2 Wang Weihua. The nature and properties of amorphous matter[J]. Progress in Physics,2013,33(5):177(in Chinese).
汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):177.
3 Zhang Haitao, Liu Rangsu, Hou Zhaoyang, et al. A simulation study for the effects of cooling rate on evolution of microstructures during solidification of liquid metal Ga[J]. Acta Physica Sinica,2006,55(5):2409(in Chinese).
张海涛,刘让苏,侯兆阳,等.冷速对液态金属Ga凝固过程中微观结构演变影响的模拟研究[J].物理学报,2006,55(5):2409.
4 Xie Z C, Gao T H, Guo X T, et al. Network connectivity in icosahedral medium-range order of metallic glass: A molecular dynamics simulation[J]. Journal of Non-Crystalline Solids,2014,406:31.
5 Yan W J, Gao T H, Guo X T, et al. Melting kinetics of bulk SiC using molecular dynamics simulation[J]. Science China Physics, Mechanics and Astronomy,2013,56(9):1699.
6 Werle P, Slemr F, Maurer K, et al. Near-and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering,2002,37(2):101.
7 Datta S. Ⅲ-Ⅴ field-effect transistors for low power digital logic applications[J]. Microelectronic Engineering,2007,84(9-10):2133.
8 Van Leest R H, Bauhuis G J, Mulder P, et al. Effects of copper diffusion in gallium arsenide solar cells for space applications[J]. Solar Energy Materials and Solar Cells,2015,140:45.
9 Einav M. Amorphous group Ⅲ-Ⅴ semiconductor material and preparation thereof: US,8 735 290[P].2014-05-27.
10 Wang J, Wu B, Zhang G, et al. Pressure induced semiconductor-metal phase transition in GaAs: Experimental and theoretical approaches[J]. RSC Advances,2016,6(12):10144.
11 Albe K, Nordlund K, Nord J, et al. Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs[J]. Physical Review B,2002,66(3):035205.
12 Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Physical Review B,1989,39(8):5566.
13 Van Vechten J A. Quantum dielectric theory of electronegativity in covalent systems. Ⅲ. Pressure-temperature phase diagrams, heats of mixing, and distribution coefficients[J]. Physical Review B,1973,7(4):1479.
14 Chen Qing, Chen Qian, Liang Yongchao, et al. Evolution of microstructures during rapid crystallization of liquid GaAs[J]. Chinese Science Bulletin,2017,62(13):1386(in Chinese).
陈庆,陈茜,梁永超,等.液态GaAs快速结晶过程中的微观结构演变[J].科学通报,2017,62(13):1386.
15 Proffen T, Billinge S J L. PDFFIT, a program for full profile structural refinement of the atomic pair distribution function[J]. Journal of Applied Crystallography,1999,32(3):572.
16 陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007.
17 Mountain R D, Basu P K. Molecular dynamics study of homoge-neous nucleation for liquid rubidium[J]. The Journal of Chemical Physics,1983,78(12):7318.
18 Li D H, Moore R A, Wang S. A computer and analytic study of the metallic liquid-glass transition. Ⅱ. Structure and mean square displacements[J]. The Journal of Chemical Physics,1988,89(7):4309.
19 Altis A, Nguyen P H, Hegger R, et al. Dihedral angle principal component analysis of molecular dynamics simulations[J]. The Journal of Chemical physics,2007,126(24):244111.
[1] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[2] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[3] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[4] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[5] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[6] 郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
[7] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[8] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[9] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[10] 袁琦, 茶丽梅, 明文全, 杨修波, 李石勇, 韩俊峰. 硒化温度对CIGS/Mo界面微观结构和化学成分的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1787-1790.
[11] 周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
[12] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[13] 弓满锋, 隋广洲, 连海山, 李明圣, 莫德云, 陈健, 伍尚华. 富Co-layers硬质合金表面渗氮处理微观结构和性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 56-61.
[14] 徐俊杰, 万隆, 宋冬冬, 王俊沙, 李颖颖, 刘莹莹. Cu含量对铝基结合剂及其金刚石工具性能的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 104-108.
[15] 吕生华, 朱琳琳, 贾春茂, 李莹, 贺亚亚, 赵浩然, 邓丽娟. PCs/GO复合物对水泥基材料微观结构和力学性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 125-129.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed