Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 56-61    https://doi.org/10.11896/j.issn.1005-023X.2017.08.012
  材料研究 |
富Co-layers硬质合金表面渗氮处理微观结构和性能研究*
弓满锋1, 隋广洲1, 连海山1, 李明圣1, 莫德云1, 陈健2, 伍尚华2
1 岭南师范学院机电工程研究所, 湛江 524048;
2 广东工业大学机电工程学院, 广州 510220
Study on Microstructure and Properties for Co-rich Layers Cemented Carbides by Surface Nitriding Treatment
GONG Manfeng1, SUI Guangzhou1, LIAN Haishan1, LI Mingsheng1, MO Deyun1, CHEN Jian2, WU Shanghua2
1 Institute of Mechatronic Engineering, Lingnan Normal University, Zhanjiang 524048;
2 College of Mechatronic Engineering, Guangdong University of Technology, Guangzhou 510220
下载:  全 文 ( PDF ) ( 1571KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用两步法烧结工艺制备了表面富Co-layers硬质合金和表面富Ti基硬质相层硬质合金,对比研究了氮化处理前后硬质合金表面微观形貌、生成相和力学性能的差异。研究表明:真空条件下烧结可在试样表层生成约20 μm 厚的Co-layers,该层中不含立方碳化物相,微观结构分析发现试样表面呈现山丘形貌且具有金属亮银色光泽,可用于修复试样表面缺陷,如微观裂纹、孔洞等,并且改善硬质合金表面韧性和提高涂层与基体之间的界面结合强度。氮化处理可在合金表面原位生成富含细晶粒的TiN相层,层厚约1 μm,微观结构分析发现该层呈金色或棕色,表面较为平整。通过性能对比分析发现渗氮虽然导致试样密度小幅降低,但是可显著改善晶粒尺寸分布不均和增加表层硬质相中的微应变,能够在提高表面硬度的同时依然保持较高韧性,同时可有效改善硬质合金的刀具耐磨性和使用寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
弓满锋
隋广洲
连海山
李明圣
莫德云
陈健
伍尚华
关键词:  硬质合金  硬质相  渗氮  微观结构  力学性能    
Abstract: The Co-rich layers and Ti-rich hard phase-layers on cemented carbides were prepared by a two-step sintering technology, respectively. The microstructure, sintering phases and mechanical properties of cemented carbides before and after nitriding treatment were studied. The ~20 μm-thick Co-rich layers were obtained on the surface of specimen under vacuum sintering condition, and no cubic carbide phase was contained in the Co-rich layers. The surfaces of specimen appear a kind of hill topography and own bright silver metal luster which were confirmed by microstructure morphology analysis. It can be used to repair the micro-defects, e.g. micro-cracks or micro-holes, on the surface of specimens, improve the toughness of cemented carbides surface, and enhance the interfacial bonding strength between the coating and the substrate. The fine grain ~1 μm-thick Ti-rich hard phase layers could be prepared in situ on the specimen surface by nitridation. The Ti-rich hard phase layers appear gold or brown color and a relatively smooth surface by microstructure analysis. Through comparison and analysis, it could be concluded that though the densities of specimens are decreased as a result of nitridation treatment, but simultaneously some properties can be significantly improved, such as fine grain size distribution and favorable surface micro-strain in the Ti-rich hard phase, which can promote surface hardness with remote toughness loss, and also effectively improve wear resistance and lifetime of cemented carbide tools.
Key words:  cemented carbide    hard phase    nitridation    microstructure    mechanical property
               出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG156.8+2  
  TG135+.5  
基金资助: 广东省自然科学基金(S2013010012107);广东省扬帆计划科研创新团队项目(411282606110);岭南师范学院科研创新团队项目;岭南师范学院新材料与先进制造协调创新中心项目
作者简介:  弓满锋:男,1973年生,博士,博士后,副教授,主要研究方向包括硬质合金制备、性能测试及其摩擦磨损失效机理分析,硬质涂层制备技术、性能测试及其残余应力研究,陶瓷机械加工技术及其工艺装备设计,力学及其有限元分析等 Tel:0759-3183184 E-mail:gongmanfeng@163.com
引用本文:    
弓满锋, 隋广洲, 连海山, 李明圣, 莫德云, 陈健, 伍尚华. 富Co-layers硬质合金表面渗氮处理微观结构和性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 56-61.
GONG Manfeng, SUI Guangzhou, LIAN Haishan, LI Mingsheng, MO Deyun, CHEN Jian, WU Shanghua. Study on Microstructure and Properties for Co-rich Layers Cemented Carbides by Surface Nitriding Treatment. Materials Reports, 2017, 31(8): 56-61.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.012  或          http://www.mater-rep.com/CN/Y2017/V31/I8/56
1 Kim H C, Kim D K, Woo K D, et al. Consolidation of binderless WC-TiC by high frequency induction heating sintering [J]. Int J Refract Met Hard Mater,2008,26(1):48.
2 Zhang L, Chen S, Cheng X, et al. Effects of cubic carbides and La additions on WC grain morphology, hardness and toughness of WC-Co alloys [J]. Trans Nonferr Met Soc Chin,2012,22(7):1680.
3 Shi L Y, Liu Y M, Huang J H, et al. Growth kinetics of cubic carbide free layers ingraded cemented carbides [J]. Int J Miner Metall Mater,2012,19:64.
4 Shen Z J, Nyg M. Kinetic aspects of superfast consolidation of silicon nitride based ceramics by spark plasma sintering [J]. Mater Chem,2001,11:204.
5 Wang X Q, Xie H F, Guo H L, et al. Sintering of WC-Co powder with nanocrystalline WC by spark plasma sintering [J]. Rare Met,2006,25(3):246.
6 Zhang D M, Fu Z. Mechanism and application of spark plasma sintering technology [J]. J Wuhan Univ Technol,1999,21(6):15.
7 Toshio N, Hideki M, Keiichi T, et al. Material design method for the functionally graded cemented carbide tool [J]. Int Refract Met Hard Mater,1999,17:397.
8 Yang X S, Wan J, Dai C Y, et al. Finite element analysis of crack propagation and fracture mechanical properties of freestanding 8wt% Y2O3-ZrO2 coatings [J]. Surf Coat Technol,2014,221:262.
9 Xiao D H, He Y H, Luo W H, et al. Effect of VC and NbC additions on microstructure and properties of ultrafine WC-10Co cemented carbides [J]. Trans Nonferr Met Soc Chin,2009,19(6):1520.
10 Kagnaya T, Boher C, Lambert L, et al. Micro- structural analysis of wear micromechanisms of WC-6Co cutting tools during high speed dry machining [J]. Int J Refract Met Hard Mater,2014,42:151.
11 Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Sintering of WC-10Co nano-powders containing TaC and VC grain growth inhibitors [J]. Trans Nonferr Met Soc Chin,2011,21(5):1080.
12 Kim H C, Shon I J, et al. Rapid sintering of ultrafine WC-Ni cermets [J]. Int J Refract Met Hard Mater,2006,24(6):427.
13 Vander M R, Sacks N. Effect of TaC and TiC on the friction and dry sliding wear of WC-6wt.% Co cemented carbides against steel counterfaces [J]. Int J Refract Met Hard Mater,2013,41:94.
14 Xiong J, Guo Z, Yang M, et al. Tool life and wear of WC-TiC-Co ultrafine cemented carbide during dry cutting of AISI H13 steel [J]. Ceram Int,2013,39(1):337.
15 Correa E O, Santos J N, Klein A N. Microstructure and mechanical properties of WC Ni-Si based cemented carbides developed by powder metallurgy [J]. Int J Refract Met Hard Mater,2010,28(5):572.
16 Rong H, Peng Z, Ren X, et al. Microstructure and mechanical pro-perties of ultrafine WC-Ni-VC- TaC-cBN cemented carbides fabricated by spark plasma sintering [J]. Int J Refract Met Hard Mater,2011,29(6):733.
17 Ren X, Peng Z, et al. Ultrafine binderless WC-based cemented carbides with varied amounts of AlN nano-powder fabricated by spark plasma sintering [J]. Int J Refract Met Hard Mater, 2013,41:308.
18 Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites [J]. J Mater Sci,2010,46(3):571.
19 Guo Z, Xiong J, Yang M, et al. Effect of Mo2C on the microstructure and properties of WC-TiC-Ni cemented carbide [J]. Int J Refract Met Hard Mater,2008,26(6):601.
20 Wittmann B, Schubert W D, Lu B. WC grain growth and grain growth inhibition in nickel and iron binder hardmetals [J]. Intl J Refract Met Hard Mater,2002,20(1):51.
21 Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Sintering of WC-10Co nano powders containing TaC and VC grain growth inhibitors [J]. Trans Nonferr Met Soc Chin,2011,21(5):1080.22 Zheng D, Li X, Ai X, et al. Bulk WC-Al2O3 composites prepared by spark plasma sintering [J]. Int J Refract Met Hard Mater,2012,30(1):51.
23 Malek O, Lauwers B, Perez Y, et al. Processing of ultrafine ZrO2 toughened WC composites [J]. J Eur Ceram Soc,2009,29(16):3371.
24 Basu B, Lee J H, Kim D Y. Development of WC-ZrO2 nano-compo-sites by spark plasma sintering [J]. J Am Ceram Soc,2004,87(2):317.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[7] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed