Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22070183-6    https://doi.org/10.11896/cldb.22070183
  金属与金属基复合材料 |
合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究
吴迪1, 林方敏1, 张洪龙2, 宋孟3, 杨永1,*, 殷兆良4, 章小峰1
1 安徽工业大学冶金工程与资源综合利用安徽省重点实验室,安徽 马鞍山 243002
2 中钢集团郑州金属制品研究院有限公司,郑州 450001
3 安徽工业大学冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002
4 天晟金属科技有限公司,山东 滨州 256600
First-principles Study on Effect of Alloying Elements on Co-precipitation of bcc-Cu/NiAl
WU Di1, LIN Fangmin1, ZHANG Honglong2, SONG Meng3, YANG Yong1,*, YIN Zhaoliang4, ZHANG Xiaofeng1
1 Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling, Anhui University of Technology, Ma'anshan 243002, Anhui, China
2 Sinosteel Zhengzhou Research Institute of Steel Wire Products Co., Ltd., Zhengzhou 450001, China
3 Key Laboratory of Metallurgical Emission Reduction & Resources Recycling Ministry of Education, Anhui University of Technology, Ma'anshan 243002, Anhui, China
4 Zouping Tiansheng Metal Technology Co., Ltd., Binzhou 256600,Shandong, China
下载:  全 文 ( PDF ) ( 7543KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 bcc-Cu和NiAl共析出是高强度钢常用且有效的强化方式。为了探究不同合金元素对bcc-Cu/NiAl共析出影响,本工作利用第一性原理计算了合金元素X(X= Cr,Co,Mo,W,V,Mn)对bcc-Cu(001)/NiAl(001)界面性质的影响,并分析上述合金元素掺杂前后界面黏附功、界面能和电子性质。研究结果表明,当Cr、Mo、W、V、Mn掺杂Al终端bcc-Cu/NiAl界面时,界面的黏附功升高,界面能下降,有利于bcc-Cu/NiAl共析出,其中Mo、W、V合金化效果更佳。掺杂Ni终端界面时,界面稳定性低于掺杂Al终端时。电子结构分析表明,掺杂Al终端时,掺杂原子与界面处Cu原子之间的电子轨道产生明显杂化,显著加强原子间的相互作用。而替换Ni原子时,轨道杂化程度较弱。Mo、W、V掺杂后,界面处电荷密度增加,Cu原子与合金原子之间形成更强的非极性共价键。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴迪
林方敏
张洪龙
宋孟
杨永
殷兆良
章小峰
关键词:  第一性原理  Cu/NiAl共析出  界面能  态密度    
Abstract: Co-precipitation of bcc-Cu and NiAl is an effective strengthening method commonly used for high strength steel. To investigate thoroughly the effects of different alloying elements on the co-precipitation of bcc-Cu/NiAl, the interfacial properties of element X (X= Cr, Co, Mo, W, V, Mn)-doped bcc-Cu(001)/NiAl(001) interfaces were studied based on first principles. The analysis of interfacial adhesion work, interfacial energy and electronic properties could clarify the significance of interfacial alloying. The calculated results show that when the Al-terminal bcc-Cu/NiAl interface dopes with Cr, Mo, W, V, Mn, the adhesion work increases, the interfacial energy decreases, promoting co-precipitation of bcc-Cu/NiAl, but the effects are more stronger when Al replaced by Mo, W or V. The interfacial stability of Ni-terminal interface is lower than that of Al-terminal interface. The electron structure analysis shows that Cr, Co, Mo, W, V, Mn have obvious hybridization of electron orbitals with Cu atoms at the interface and significantly strengthen the interatomic interaction when Al-terminal bcc-Cu/NiAl interface is doped. When Ni-terminal interface is doping, the hybridization degree is weak. After Mo, W and V doping the interface, the charge density at the interface increases, and stronger non-polar covalent bonds are formed between Cu atoms and alloying atoms.
Key words:  first-principles    bcc-Cu/NiAl co-precipitates    interfacial energy    partial density of states
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TG142.1  
基金资助: 安徽省自然科学基金(2108085QE214);安徽省冶金工程与资源循环利用重点实验室开放基金(SKF19-02);冶金减排与资源综合利用教育部重点实验室开放基金(JKF20-07)
通讯作者:  * 杨永,安徽工业大学冶金工程学院讲师。2019年1月毕业于东北大学材料科学与工程学院,获得博士学位。主要从事(超)高强度钢开发设计及第二相析出热/动力学计算。近几年,在金属材料领域期刊发表多篇SCI论文。yyang@ahut.edu.cn   
作者简介:  吴迪,现为安徽工业大学冶金工程学院硕士研究生,在杨永老师的指导下进行研究。目前主要研究领域为超高强钢的第二相析出强化行为。
引用本文:    
吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
WU Di, LIN Fangmin, ZHANG Honglong, SONG Meng, YANG Yong, YIN Zhaoliang, ZHANG Xiaofeng. First-principles Study on Effect of Alloying Elements on Co-precipitation of bcc-Cu/NiAl. Materials Reports, 2024, 38(9): 22070183-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070183  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22070183
1 Suna L, Simmb T H, Martinc T L,et al. Acta Materialia, 2018, 149, 285.
2 Kim S H, Kim H, Kim N J. Nature, 2015, 518, 77.
3 Jiao Z B, Liu T C. Science Bulletin, 2017, 62, 1043.
4 Lee H, Jo M C, Sohn S S,et al. Acta Materialia, 2018, 147, 247.
5 Sun Z, Song G, Ilavsky J,et al. Materials Research Letters, 2015, 3, 128.
6 Isheim D, Vaynman S, Fine M E,et al. Scripta Materialia, 2008, 59, 1235.
7 Wen Y R, Hirata A, Zhang Z W,et al. Acta Materialia, 2013, 61, 2133.
8 Kou H, Lu J, Li Y. Advanced Materials, 2014, 26, 5518.
9 Kan L Y, Ye Q B, Wang Q H,et al. Materials Science and Engineering: A, 2021, 802, 140678.
10 Mulholland M D, Seidman D N. Acta Materialia, 2011, 59, 1881.
11 Gao Y H, Liu S Z, Hu X B,et al. Materials Science and Engineering: A, 2019, 759, 298.
12 Monzen R, Iguchi M, Jenkins M L. Philosophical Magazine Letters, 2000, 80, 137.
13 Lee T H, Kim Y O, Kim S J. Philosophical Magazine, 2007, 87, 209.
14 Yang J M, Jeng S M, Bain K,et al. Acta Materialia, 1997, 45, 295.
15 Jiao Z B, Luan J H, Miller M K,et al. Materials Today, 2017, 20, 142.
16 Huang D, Yan J, Zuo X. Materials Characterization, 2019, 155, 109786.
17 Jiao Z B, Luan J H, Miller M K,et al. Scientific Reports, 2016, 6, 1.
18 Jiao Z B, Luan J H, Guo W,et al. Acta Materialia, 2016, 120, 216.
19 Jiao Z B, Luan J H, Miller M K,et al. Acta Materialia, 2015, 84, 283.
20 Xu S S, Liu Y W, Zhang Y,et al. Materials Research Letters, 2020, 8, 187.
21 Liu Q, Song H, Zhang J,et al. Materials Characterization, 2021, 171, 110754.
22 Jiao Z B, Luan J H, Zhang Z W,et al. Acta Materialia, 2013, 61, 5996.
23 Vanderbilt D. Physical Review B, 1990, 41, 7892.
24 Marlo M, Milman V. Physical Review B, 2000, 62, 2899.
25 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77, 3865.
26 Cao Y, Zhu P, Zhu J,et al. Computational Materials Science, 2016, 111, 34.
27 Li H, Cao Y, Zhou S,et al. Modern Physics Letters B, 2016, 30, 1650133.
28 Wang J, Enomoto M, Guo H,et al. Computational Materials Science, 2020, 172, 109351.
29 Tang Z, Hasegawa M, Nagai Y,et al. Physical Review B, 2002, 65, 195108.
30 Li Y, Gao Y, Xiao B,et al. Computational Materials Science, 2011, 50, 939.
31 Yang J, Huang J, Fan D,et al. Applied Surface Science, 2016, 384, 207.
32 Wu D, Yang Y, Zhang X F, et al. Acta Physica Sinica, 2022, 71(8), 086301(in Chinese).
吴迪, 杨永, 章小峰, 等. 物理学报, 2022, 71(8), 086301.
33 Han Y F, Dai Y B, Wang J,et al. Applied Surface Science, 2011, 257, 7831.
34 Ma L, Lu Y, Li S, et al. Applied Surface Science, 2017, 435, 863.
35 Liu Y, Xing J, Li Y,et al. Applied Surface Science, 2017, 405, 497.
[1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[2] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[3] 范青青, 安立宝, 常春蕊, 张志明, 贾晓彤. 石墨烯负载Pdn(n=1—3)原子/团簇吸附三氯甲烷分子的第一性原理研究[J]. 材料导报, 2023, 37(21): 22050174-6.
[4] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[5] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[6] 林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 22050098-6.
[7] 马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
[8] 孙翠翠, 毕舰镭. 边缘修饰对锗烯纳米带电子结构的影响[J]. 材料导报, 2023, 37(13): 21110002-8.
[9] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[10] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[11] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[12] 孟帅, 李坤, 秦振兴, 张宇飞, 马柯榕, 宫长伟, 杨雯. 铝酸钇晶体光学性质和热力学性质的第一性原理研究[J]. 材料导报, 2023, 37(10): 22060251-5.
[13] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[14] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[15] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed