Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 24060132-8    https://doi.org/10.11896/cldb.24060132
  金属与金属基复合材料 |
不同加载路径和应变速率下挤压Mg-8.0Al-0.1Mn镁合金的力学响应行为
夏二立1, 叶拓1, 邱飒蔚1, 郭鹏程1,2,*, 吴远志1, 李落星2,3
1 湖南工学院智能制造与机械工程学院,湖南 衡阳 421002
2 湖南大学重庆研究院,重庆 400044
3 湖南大学整车先进设计制造技术全国重点实验室,长沙 410082
Mechanical Response Behavior of an Extruded Mg-8.0Al-0.1Mn Magnesium Alloy Under Various Loading Paths and Strain Rates
XIA Erli1, YE Tuo1, QIU Sawei1, GUO Pengcheng1,2,*, WU Yuanzhi1, LI Luoxing2,3
1 School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
2 Research Institute of Hunan University in Chongqing, Hunan University, Chongqing 400044, China
3 State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 4889KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用准静态压缩,对不同加载路径和应变速率下挤压Mg-8.0Al-0.1Mn镁合金的力学响应行为进行了研究,加载应变速率为0.000 1 s-1、0.001 s-1、0.01 s-1、0.1 s-1和0.33 s-1,加载路径为沿挤压方向(Extrusion direction,ED)和垂直挤压方向(Transverse direction,TD),固溶工艺分别为350 ℃保温6 h和410 ℃保温6 h。结果表明挤压Mg-8.0Al-0.1Mn镁合金的力学响应行为具有较强的各向异性。沿TD压缩的应力-应变曲线呈“C”形,在特定应变速率下还出现了不同类型的锯齿状波动;沿ED压缩的应力-应变曲线则为“S”形,仅在塑性失稳阶段产生了剧烈的锯齿状波动。加载应变速率越低和晶粒尺寸越小,Portevin-Le Chatelier(PLC)越显著。当加载应变速率为0.000 1 s-1时,PLC锯齿随加载应变的增加逐渐由A型转变为B型,最后演变为C型。沿ED压缩变形后,晶粒仍近似呈等轴状,但产生了多组相互平行的形变孪晶;沿TD压缩时除产生了一组相互平行的形变孪晶外,部分晶粒中还出现另一组与之交叉的形变孪晶。相比之下,沿TD压缩的协调变形能力较弱,需要晶界和孪晶界转动来协调各晶粒间的变形,导致晶粒及孪晶均出现了明显的扭曲。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏二立
叶拓
邱飒蔚
郭鹏程
吴远志
李落星
关键词:  镁合金  力学响应行为  应变速率  加载路径  锯齿波动    
Abstract: The mechanical behaviors of the extruded Mg-8.0Al-0.1Mn alloys under different loading paths and various strain rates were investigated by quasi-static compression. The applied strain rates were 0.000 1 s-1, 0.001 s-1, 0.01 s-1, 0.1 s-1 and 0.33 s-1, and the compression loadings were performed along extrusion direction(ED) and transverse direction(TD). Before compression tests, the alloys were solution treated at 350 ℃ for 6 h and 410 ℃ for 6 h, respectively. The results confirmed a strong anisotropy of the mechanical behavior of extruded Mg-8.0Al-0.1Mn magnesium alloy. The stress-strain curves of the alloys subjected to compression loaded along TD showed a “C” shape with different types of serrated fluctuations at a specific strain rate, while the stress-strain curves of compression along ED showed an “S” shape with severe serrated fluctuations occurring only at the plastic instability stage. The reductions in the applied strain rate and the grain size resulted in more significant Portevin-Le Chatelier(PLC). At the loading strain rate of 0.000 1 s-1, the PLC serration gradually transformed from A-type to B-type and finally to C-type with the increase of loading strain. After compression along ED, the grains were still approximately equiaxed, and several sets of parallel deformation twins could be observed. And the compression along TD led to a set of parallel deformation twins, and also the formation of another set of twins intersecting with the former in some grains. The alloy showed a relatively low ability of coordinated deformation when compressed along TD, thereby the rotations of grain boundaries and twin boundaries were required to coordinate deformation, resulting in obvious distortion of grains and twins.
Key words:  magnesium alloy    mechanical response behavior    strain rate    loading path    serrated fluctuation
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TH142.3  
基金资助: 国家自然科学基金(52201074;52475344;52171115;U20A20275);湖南省自然科学基金(2024JJ5644);长沙市自然科学基金(kq2208420)
通讯作者:  *郭鹏程,湖南工学院智能制造与机械工程学院副教授,2010年于中北大学获得学士学位,2013年于燕山大学获得硕士学位,2017年于湖南大学获机械工程博士学位。主要研究方向为整车多学科多目标优化设计及车身用高强钢与铝镁合金成形技术。共发表学术论文70余篇,授权发明专利5项。gpch860429@163.com   
作者简介:  夏二立,湖南工学院智能制造与机械工程学院讲师。在2012年于石家庄铁道大学获得学士学位,2015年于石家庄铁道大学获得硕士学位,2021年于湖南大学获机械工程博士学位。主要研究方向为汽车CAE、车用铝合金开发、金属热加工。共发表学术论文19篇,申请国家发明专利2项。
引用本文:    
夏二立, 叶拓, 邱飒蔚, 郭鹏程, 吴远志, 李落星. 不同加载路径和应变速率下挤压Mg-8.0Al-0.1Mn镁合金的力学响应行为[J]. 材料导报, 2024, 38(22): 24060132-8.
XIA Erli, YE Tuo, QIU Sawei, GUO Pengcheng, WU Yuanzhi, LI Luoxing. Mechanical Response Behavior of an Extruded Mg-8.0Al-0.1Mn Magnesium Alloy Under Various Loading Paths and Strain Rates. Materials Reports, 2024, 38(22): 24060132-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24060132  或          http://www.mater-rep.com/CN/Y2024/V38/I22/24060132
1 Jo S, Whitmore L, Woo S, et al. Scientific Reports, 2020, 10(1), 22413.
2 Bian M Z, Sasaki T T, Nakata T, et al. Acta Materialia, 2018, 158, 278.
3 Joost W J, Krajewski P E. Scripta Materialia, 2017, 128, 107.
4 Chen F Y, Guo P C, Hu Z H, et al. Materials Reports, 2021, 35(16), 16093.
陈斐洋, 郭鹏程, 胡泽豪, 等. 材料导报, 2021, 35(16), 16093.
5 Wu Y, Deng B, Li X, et al. Journal of Materials Research and Technology, 2024, 30, 3840.
6 Chen F, Guo P, Jiang Z, et al. Acta Metallurgica Sinica(English Letters), 2023, 36(2), 281.
7 Woo S K, Pei R, Al-Samman T, et al. Journal of Magnesium and Alloys, 2022, 10(1), 146.
8 Li C Q, Xu D K, Wang B J, et al. Journal of Materials Science and Technology, 2016, 32(12), 1232.
9 Hu Z, Qi Y, Nie X, et al. Materials Characterization, 2021, 178, 111198.
10 Yilmaz A. Science and Technology of Advanced Materials, 2011, 12(6), 063001.
11 Härtel S, Graf M, Lehmann T, et al. Materials Science and Engineering A, 2017, 705, 62.
12 Wang W, Chen W, Jung J, et al. Materials Science and Engineering A, 2022, 844, 143168.
13 Malik A, Wang Y, Nazeer F, et al. Journal of Alloys and Compounds, 2021, 858, 157740.
14 Huang X, Xin Y, Cao Y, et al. Journal of Materials Science and Technology, 2022, 109, 30.
15 Tang W, Zhang S, Fan X, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(3), 371.
唐伟琴, 张少睿, 范晓慧, 等. 中国有色金属学报, 2010, 20(3), 371.
16 Yao J, Wang B, Deng L, et al. Science China Technological Sciences, 2015, 58, 2052.
17 Bao J, Li Q, Chen Y, et al. Materials Reports, 2022, 36(10), 112.
鲍键, 李全安, 陈晓亚, 等. 材料导报, 2022, 36(10), 112.
18 He J, Wu L. Transactions of Metal Heat Treatment, 2017, 38(1), 43.
何杰军, 吴鲁淑. 材料热处理学报, 2017, 38(1), 43.
19 Liu X, Zhang X, Xie C, et al. Chinese Journal of Nonferrous Metals, 2023, 33(11), 3650.
刘筱, 张晓峰, 谢超, 等. 中国有色金属学报, 2023, 33(11), 3650.
20 Peng J, Zhang Z, Chen H, et al. Materials Science and Engineering A, 2023, 862, 144353.
21 Liu J, Chen Z, Chen D, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(6), 1329.
22 Zhang L, Guo P, Wang G, et al. Journal of Materials Research and Technology, 2020, 9(2), 1500.
23 Qian L, Guo P, Meng J, et al. Journal of Materials Science, 2013, 48(4), 1669.
24 Liu S, Ge Y, Li D, et al. Journal of Materials Research and Technology, 2023, 24, 586.
25 Lin N, Yang K H, Zeng S F, et al. Advanced Materials Research, 2012, 472, 2962.
26 Zhu S M, Nie J F. Scripta Materialia, 2004, 50(1), 51.
27 Li C, Xu D K, Han E H. Materials China, 2016, 35(11), 809.
李传强, 许道奎, 韩恩厚. 中国材料进展, 2016, 35(11), 809.
28 Jiang L, Jonas J, Mishra R. Materials Science and Engineering A, 2011, 528(21), 6596.
29 Wu D, Chen R, Han E. Materials Science and Engineering A, 2012, 532, 267.
30 Corby C, Caceres C, Materials Science and Engineering A, 2004, 387, 22.
31 Gao L, Chen R, Han E. Journal of Alloys and Compounds, 2009, 472(1), 234.
32 Wang C, Xu Y, Han E. Materials Letters, 2006, 60(24), 2941.
33 Tian B, Zhang Y, Chen C. Materials Science and Engineering A, 1998, 254, 227.
34 Wang W, Wu D, Shah S, et al. Materials Science and Engineering A, 2016, 649, 214.
35 Chávez B, Garcés G, Pérez Z, et al. Revista de Metalurgia, 2020, 56(3), 175.
36 Sha G, Liu T, Yin M, et al. Materials Research Express, 2022, 9(3), 036514.
37 Wang Y, Yang B, Gao M, et al. Materials and Design, 2022, 220, 110849.
38 Cai M, Niu R, Yu R, et al. Materials Science and Engineering A, 2010, 527(20), 5175.
39 Li X, Cheng C, Le Q, et al. Journal of Materials Science and Technology, 2020, 52(17), 152.
40 Tang Y, Le Q, Jia W, et al. Materials Science and Engineering A, 2017, 704, 344.
41 Guo P, Liu X, Zhu B, et al. Journal of Magnesium and Alloys, 2022, 10(11), 3205.
42 Wang C, Xu Y B, Han E H. Acta Metallurgica Sinica, 2006, 42(2), 191.
王聪, 徐永波, 韩恩厚. 金属学报, 2006, 42(2), 191.
43 Ma P, Zhang D, Zhuang L, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22, 175.
44 Guo, P, Qian, L, Meng, J, et al. Materials Science and Engineering A, 2013, 584, 133.
45 Zhu B, Liu X, Xie C, et al. Journal of Materials Science and Technology, 2020, 50, 59.
[1] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[2] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型[J]. 材料导报, 2024, 38(20): 24050146-9.
[3] 张娜娜, 李全安, 陈晓亚, 陈培军, 谭劲峰. 高性能镁合金轧制成形研究进展[J]. 材料导报, 2024, 38(2): 22080125-9.
[4] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[5] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[6] 计鸿鑫, 任伟杰, 蒋先贤, 杜文宇, 孙静娜, 黄华贵. 镁合金板材弯曲回弹预测与控制研究进展[J]. 材料导报, 2024, 38(15): 23080183-7.
[7] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[8] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[9] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[10] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[11] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[12] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[13] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[14] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[15] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed