Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23070040-10    https://doi.org/10.11896/cldb.23070040
  无机非金属及其复合材料 |
钒钛铁尾矿制备绿色建筑材料的研究进展
田小平1,2, 王长龙1,*, Hidayati Asrah2,*, Lim Chung Han2, 平浩岩1, 齐洋1, 马锦涛1, 荆牮霖1, 刘治兵1, 郑永超3, 翟玉新4, 刘枫5
1 河北工程大学土木工程学院,河北 邯郸 056038
2 马来西亚沙巴大学工程学院,沙巴 哥打京那巴鲁 88400
3 北京建筑材料科学研究总院有限公司固废资源化利用与节能建材国家重点实验室,北京 100041
4 中铁建设集团有限公司,北京 100040
5 中铁建设集团建筑发展有限公司,北京 100070
Research Progress on Preparation of Green Building Materials Using Vanadium-Titanium Iron Ore Tailings
TIAN Xiaoping1,2, WANG Chonglong1,*, Hidayati Asrah2,*, Lim Chung Han2, PING Haoyan2, QI Yang2, MA Jintao2, JING Jianlin2, LIU Zhibing2, ZHENG Yongchao3, ZHAI Yuxin4, LIU Feng5
1 School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
2 Faculty of Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
3 State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
4 China Railway Construction Group Co.,Ltd., Beijing 100040, China
5 Construction Development Co., Ltd., China Railway Construction Group, Beijing 100070, China
下载:  全 文 ( PDF ) ( 11000KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钒钛磁铁矿是以铁、钒、钛为主的多金属元素共生的复合矿,在世界分布不均衡。中国是该矿石的主要产出国之一,该矿石分布在五个主要矿带。钒钛铁尾矿是钒钛磁铁矿选矿过程中产生的固体工业废弃物,是一种多金属伴生的铁尾矿。该尾矿在中国的堆存量巨大,富含很多有用化学组分,也被称为人工矿床。该尾矿以硅酸盐为主,主要化学成分是二氧化硅、三氧化二铝、氧化钙和氧化铁等,主要矿物是脉石矿物。国内外学者对其在绿色建筑材料综合利用方面做了很多有益探索,但总体来看,这些研究更多停留在实验室里。主要原因是(1)不同尾矿库甚至同一尾矿库的钒钛铁尾矿理化性能可能有较大差异,尾矿原料的稳定性不足;(2)受尾矿原料不稳定的理化性能影响,中试结果经常出现较大差异,难以实现规模化利用;(3)钒钛铁尾矿库大多地处偏僻,运输成本高,且缺乏高附加值的尾矿产品,规模以上企业因投入大产出小望而生畏。本文综述了钒钛铁尾矿在中国的地域分布和堆存量,重点研究了其化学组成、矿物组成、粒度分布和重金属浸出,分析了其作为主要原料在绿色建筑材料方面的研究进展,指出了存在问题并展望了发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田小平
王长龙
HidayatiAsrah
Lim Chung Han
平浩岩
齐洋
马锦涛
荆牮霖
刘治兵
郑永超
翟玉新
刘枫
关键词:  钒钛磁铁矿  钒钛铁尾矿  绿色建筑材料  混凝土  矿物掺合料    
Abstract: Vanadium-titanium magnetite is a complex ore with a symbiosis of multi-metal elements, mainly iron, vanadium and titanium, which is unevenly distributed in the world. China is one of the main producing countries of the ore, and the ore is distributed in five major mining zones. Vanadium-titanium iron ore tailings (VTIOT) is solid industrial wastes generated during the beneficiation of vanadium-titanium magnetite, a kind of polymetallic associated iron ore tailings. The tailings has a huge stockpile in China and is rich in many useful chemical components, also known as artificial deposit. The tailings is dominated by silicates, with the main chemical components being silica, aluminum trioxide, calcium oxide and iron oxide, and the main minerals are vein minerals. Many scholars at home and abroad have made many useful explorations on the comprehensive utilization of the tailings in green building materials. However, in general, the studies are more in the laboratory. The main reason is that (i) different tailings ponds or even the same tailings ponds of VTIOT physical and chemical properties may have large differences, and the stability of the tailings raw materials is not sufficient; (ii) by the unstable physical and chemical properties of VTIOT, the results of pilot tests often show large differences, it is difficult to achieve large-scale utilization; (iii) the ponds of VTIOT are mostly located in remote areas, with high transportation costs and lack of high value-added tailings products, which is daunting to enterprises. This paper reviews the geographical distribution and stockpiles of VTIOT in China, focuses on its chemical composition, mineral composition, particle size distribution and heavy metal leaching, analyzes the research progress on green building materials as main raw materials, points out the problems and looks forward to the development prospects.
Key words:  vanadium-titanium magnetite    vanadium-titanium iron ore tailings    green building materials    concrete    mineral admixture
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU522.3  
基金资助: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2020402079);河北省科技重大专项项目(21283804Z);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007);中铁建设集团有限公司科技研发计划(22-14b;22-11b),邯郸市科学技术研究与发展计划项目(21422111260)
通讯作者:  *王长龙,通信作者,河北工程大学教授、博士研究生导师。2014年1月毕业于北京科技大学,获矿业工程博士专业学位。长期从事新型建筑材料、矿物材料及复杂共生矿产资源综合利用研究。在国内外重要期刊发表文章80多篇,授权发明专利12项,出版专著4部。
Hidayati Asrah, corresponding author, a senior lecturer in the Civil Engineering Program at the Faculty of Engineering, Universiti Malaysia Sabah (UMS). She obtained her Bachelor's degree in Civil Engineering from Universiti Malaysia Sabah (UMS) in 1999, her MSc in Concrete Technology, Construction, and Management from the University of Dundee, UK (2002), and her PhD in Civil Engineering from UMS (2017). With over 20 years of experience teaching concrete technology and construction materials, Dr. Hidayati has published numerous research papers in books, journals, and conferences. Her research interests include the strength and durability of concrete, green construction materials, interlocking compressed earth bricks (ICEB), and pozzolanic materials. Dr. Hidayati's work in these areas has contributed significantly to the advancement of sustainable and environmentally friendly construction practices.baistuwong@139.com;hidayati@ums.edu.my   
作者简介:  田小平,河北工程大学土木工程学院讲师,硕士,University Malaysia Sabah在读博士。从事新型环境生态材料、绿色混凝土的研究。在国内外重要期刊发表文章10余篇,授权专利4项。
引用本文:    
田小平, 王长龙, HidayatiAsrah, Lim Chung Han, 平浩岩, 齐洋, 马锦涛, 荆牮霖, 刘治兵, 郑永超, 翟玉新, 刘枫. 钒钛铁尾矿制备绿色建筑材料的研究进展[J]. 材料导报, 2024, 38(19): 23070040-10.
TIAN Xiaoping, WANG Chonglong, Hidayati Asrah, Lim Chung Han, PING Haoyan, QI Yang, MA Jintao, JING Jianlin, LIU Zhibing, ZHENG Yongchao, ZHAI Yuxin, LIU Feng. Research Progress on Preparation of Green Building Materials Using Vanadium-Titanium Iron Ore Tailings. Materials Reports, 2024, 38(19): 23070040-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070040  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23070040
1 Wang J L. Vanadium and Titanium, 1993(5), 1 (in Chinese).
汪镜亮. 钒钛, 1993(5), 1.
2 Lin S Z. Acta Mineralogica Sinica, 1982(3), 166 (in Chinese).
林师整. 矿物学报, 1982(3), 166.
3 Wang X Q. Vanadium-titanium magnetite blast furnace smelting, Metallurgical Industry Press, China,1994 (in Chinese).
王喜庆. 钒钛磁铁矿高炉冶炼, 冶金工业出版社, 1994.
4 Huang D. New processes and comparative study of utilization of vanadium-titanium magnetite. Ph.D. Thesis, Central South University, China, 2011 (in Chinese).
黄丹. 钒钛磁铁矿综合利用新流程及其比较研究. 博士学位论文, 中南大学, 2011.
5 Zhu Y X, Zhang X, Xu Y, et al. World Sci-Tech R & D, 2017, 39(4), 325 (in Chinese).
朱月仙, 张娴, 许轶, 等. 世界科技研究与发展, 2017, 39(4), 325.
6 Chen S, Fu X, Chu M, et al. Journal of Cleaner Production, 2015, 101, 122.
7 Yang Y H, Hui B, Yan S Q, et al. Multipurpose Utilization of Mineral Resources, 2023(4), 1 (in Chinese).
杨耀辉, 惠博, 颜世强, 等. 矿产综合利用, 2023(4), 1.
8 Wang Z H. Vanadium and Titanium, 1993(4), 1 (in Chinese).
汪子和. 钒钛, 1993(4), 1.
9 Christie T, Brathwaite B. Mineral commodity report 16-titanium, New Zealand, 2016.
10 Cheng Q L. Study on preparation and autoclave curing process kinetics of autoclaved aerated concrete with low silicon iron tailings. Master's Thesis, Wuhan University of Technology, China, 2015 (in Chinese).
程琪林. 低硅铁尾矿制备加气混凝土及蒸压养护动力学研究. 硕士学位论文, 武汉理工大学, 2015.
11 Luo J H, Wu Z Y, Li J H, et al. Multipurpose Utilization of Mineral Resources, 2015(4), 53 (in Chinese).
罗金华, 武昭妤, 李俊翰, 等. 矿产综合利用, 2015(4), 53.
12 Qi S M, Tang X X. Journal of the Institute of Mineral Geology, Chinese Academy of Geological Sciences, 1982(1), 73 (in Chinese).
亓绍枚, 唐兴信. 中国地质科学院矿床地质研究所所刊, 1982(1), 73.
13 Zhu J S. Metal Mine, 2000 (1), 1 (in Chinese).
朱俊士. 金属矿山, 2000 (1), 1.
14 Wu X, Zhang J. Titanium Industry Progress, 2006, 23(6), 8 (in Chinese).
吴贤, 张健. 钛工业进展, 2006, 23(6), 8.
15 Yu H D, Wang L N, Qu J K, et al. Journal of Northeastern University(Natural Science), 2020, 41(2), 275 (in Chinese).
于宏东, 王丽娜, 曲景奎, 等. 东北大学学报(自然科学版), 2020, 41(2), 275.
16 Wang S, Guo Y F, Jiang T, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(12), 2528.
17 Rorie Gilligan, Aleksandarn, Nikoloski. Minerals Engineering. 2020, 146, 106106.
18 Xie C X, Zhang S H, Wang S B, et al. Mineral Deposits, 2006(25), 487 (in Chinese).
谢承祥, 张少华, 王少波, 等. 矿床地质, 2006(25), 487.
19 Gan C D, Cui S F, Wu Z Z, et al. Journal of Hazardous Materials, 2022, 429, 128032.
20 Chen T, Jian S, Xie X, et al. Conservation and Utilization of Mineral Resources, 2021, 41(2), 174 (in Chinese).
陈桃, 简胜, 谢贤, 等. 矿产保护与利用, 2021, 41(2), 174.
21 Yang Y, Shan Y K, He K H. Journal of Xichang University (Natural Science Edition), 2023, 37(1), 58(in Chinese).
杨燕, 单永奎, 何科翰. 西昌学院学报(自然科学版), 2023, 37(1), 58.
22 Wang X, Han Y X, Li Y J, et al. Metal Mine, 2019(6), 33(in Chinese).
王勋, 韩跃新, 李艳军, 等. 金属矿山, 2019(6), 33.
23 Zheng Y, Han B, Liu L W, et al. Iron Steel Vanadium Titanium, 2022, 43(4), 191 (in Chinese).
郑鹰, 韩冰, 刘力维, 等. 钢铁钒钛, 2022, 33(4), 191.
24 Liu Y D, Wei Y H, Chen C, et al. Multipurpose Utilization of Mineral Resources, 2023(4), 35 (in Chinese).
刘应冬, 魏友华, 陈超, 等. 矿产综合利用, 2023(4), 35.
25 Chengde Municipal People's Government. Response to Proposal No. 0282, 2022 (in Chinese).
承德市人民政府. 第0282号提案的答复, 2022.
26 Ji X T, Zhao L, Liu L W, et al. Geological Journal of China Universities, 2017, 23(2), 244 (in Chinese).
季馨婷, 赵良, 刘连文, 等. 高校地质学报, 2017, 23(2), 244.
27 CAE. Strategic Research Report on the Development of Vanadium and Titanium Resources Mining and Mineral Processing Technology in the Panxi Region, 2015 (in Chinese).
中国工程院, 攀西地区钒钛资源开采及选矿技术发展战略研究报告, 2015.
28 Su J. Study on migration and solidification of heavy metals from tailings and its building materials. Master's Thesis, Beijing Jiaotong University, China, 2017 (in Chinese).
苏静. 尾矿及其建筑材料的重金属迁移固化的研究. 硕士学位论文, 北京交通大学, 2017.
29 Zhang S H, Xue X X, Jin Z F. Journal of Materials and Metallurgy, 2004, 3(4), 241 (in Chinese).
张淑会, 薛向欣, 金在峰. 材料与冶金学报, 2004, 3(4), 241.
30 Yao Y D. Study on technique process for manufacturing building materials with gangue as raw materials. Master's Thesis, Sichuan university, China, 2002 (in Chinese).
姚亚东. 矿山尾矿制作建筑材料工艺技术研究. 硕士学位论文, 四川大学, 2002.
31 Long Y B, Zhang Y S. Modern Mining, 2007 (7), 22 (in Chinese).
龙运波, 张裕书. 现代矿业, 2007 (7), 22.
32 Ning Y J. Metal Mine, 2013(12), 61 (in Chinese).
宁娅娟. 金属矿山, 2013 (12), 61.
33 Wang J P. Modern Mining, 2017 (10), 92 (in Chinese).
王建平. 现代矿业, 2017 (10), 92.
34 Mao K, Cai L, Wu X W, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(12), 3719 (in Chinese).
毛奎, 蔡亮, 吴小文, 等. 硅酸盐通报, 2019, 38(12), 3719.
35 Liu M, Xu L H, Di Y P, et al. Metal Mine, 2008 (7), 144 (in Chinese).
刘明, 徐利华, 邸云萍, 等. 金属矿山, 2008(7), 144.
36 Wang C Y, Zheng Y C, Li S, et al. China Concrete and Cement Products, 2019(5), 19 (in Chinese).
王春阳, 郑永超, 李胜, 等. 混凝土与水泥制品, 2019(5), 19.
37 Shu W, Luo L Q, Cheng Q L, et al. The Chinese Journal of Process Engineering, 2015, 15(6), 1075 (in Chinese).
舒伟, 罗立群, 程琪林, 等. 过程工程学报, 2015, 15(6), 1075.
38 Ni W, Zhang C Y, Zhou Y M. Tao Ci, 1997(6), 27 (in Chinese).
倪文, 张春艳, 邹一民. 陶瓷, 1997(6), 27.
39 Wang J Z. Building Energy Efficiency, 1998(4), 3 (in Chinese).
王金忠. 建筑节能, 1998(4), 3.
40 Peng L. Research on silica alumina activity stimulation of iron tailings and filling cementitious materials based on iron tailings. Master's Thesis, Chongqing University, China, 2014 (in Chinese).
彭链. 铁尾矿硅铝活性激发及铁尾矿基充填胶凝材料制备技术研究. 硕士学位论文, 重庆大学, 2014.
41 Li Y C. Study on preparation of architectural decorative materials from Anshan-type iron ore tailings. Master's Thesis, Jilin University, China, 2011 (in Chinese).
李亚超. 鞍山式铁尾矿粉制备建筑饰面材料的研究. 硕士学位论文, 吉林大学, 2011.
42 Xiang J, Huang Q, Lv X, et al. Journal of Hazardous Materials, 2017, 336, 1.
43 Ai Y J. Effects of green manure on ecological restoration of vanadium titanium magnetite tailings. Master's Thesis, North China University of Science and Technology, China, 2016 (in Chinese).
艾艳君. 绿肥辅助钒钛磁铁矿尾矿生态修复研究. 硕士学位论文, 华北理工大学, 2016.
44 Yu M Z. Chengde tailing pond safety supervision on the problem sand countermeasures. Master's Thesis, Hebei University, China, 2014 (in Chinese).
于明珠. 承德市尾矿库安全监管问题与对策研究. 硕士学位论文, 河北大学, 2014.
45 Yang S L. Non-blast furnace smelting technology of vanadium-titanium magnetite, Metallurgical Industry Press, China, 2012 (in Chinese).
杨绍利. 钒钛磁铁矿非高炉冶炼技术, 冶金工业出版社, 2012.
46 Luo X J. The rhythmic feature of panzhihua vanadic titano-magetite deposit and its research significance. Master's Thesis, Chengdu University of Technology, 2003 (in Chinese).
罗小军. 攀枝花钒钛磁铁矿矿床韵律层特征及其研究意义. 硕士学位论文, 成都理工大学, 2003.
47 Lyu Z H, Zhao D K, Cheng H W, et al. Nonferrous Metals (Mineral Processing Section), 2020(1), 55(in Chinese).
吕子虎, 赵登魁, 程宏伟, 等. 有色金属(选矿部分), 2020(1), 55.
48 Song X M, Wang Y G. Modern Mining, 2015 (1), 86 (in Chinese).
宋晓敏, 王永刚. 现代矿业, 2015 (1), 86.
49 Yin W Z, Xu D, Yang Y H, et al. Multipurpose Utilization of Mineral Resources, 2020(6), 37 (in Chinese).
印万忠, 徐东, 杨耀辉, 等. 矿产综合利用, 2020(6), 37.
50 Deng J, Zhang Y, Liu F Y, et al. Nonferrous Metals(Mineral Processing Section), 2015(2), 30 (in Chinese).
邓杰, 张渊, 刘飞燕, 等. 有色金属(选矿部分), 2015(2), 30.
51 Xu X, Wang G D, Zeng B. Yunnan Chemical Technology, 2013, 40(4), 9 (in Chinese).
徐翔, 王国栋, 曾波. 云南化工, 2013, 40(4), 9.
52 Chang N. Study on preparation of soundproof board from vanadium titanium magnetite tailings composite cementitious material. Master's Thesis, Heibei University of Engineering, China, 2020 (in Chinese).
常宁. 钒钛磁铁尾矿复合胶凝材料制备隔声板材的研究. 硕士学位论文, 河北工程大学, 2020.
53 Wang C L, Li Y, Cai H, et al. New industrial solid waste-based concrete, Science Press, China, 2021 (in Chinese).
王长龙, 李颖, 蔡红, 等. 新型工业固废基混凝土, 科学出版社, 2021.
54 Fu W Z, Zhang Y, Hong B X, et al. Multipurpose Utilization of Mineral Resources, 1999(1), 3 (in Chinese).
傅文章, 张渊, 洪秉信, 等. 矿产综合利用, 1999(1), 3.
55 Luo J H. Multipurpose Utilization of Mineral Resources, 2015(3), 55 (in Chinese).
罗金华. 矿产综合利用, 2015(3), 55.
56 Li C, Wang W Z, Liu Z W, et al. Multipurpose Utilization of Mineral Resources, 2019(3), 40 (in Chinese).
李城, 王伟之, 刘泽伟, 等. 矿产综合利用, 2019(3), 40.
57 Wang J G, Li Z H, Guo X P. Conservation and Utilization of Mineral Resources, 2012(2), 14 (in Chinese).
王敬功, 李朝晖, 郭秀平. 矿产保护与利用, 2012(2), 14.
58 Zhang Z H, Pan L X, Li Z H, et al. Environment Engineering, 2015, 33(S1), 557 (in Chinese).
张志海, 潘利祥, 李朝晖, 等. 环境工程, 2015, 33(S1), 557.
59 Niu F S, Li Z L, Zhang J X. Mining & Processing Equipment, 2015, 43(11), 113 (in Chinese).
牛福生, 李卓林, 张晋霞. 矿山机械, 2015, 43(11), 113.
60 Chen C. Vanadium titanium magnetite tailings resource investigation and tailings resource utilization. Master's Thesis, Southwest University of Science and Technology, China, 2020 (in Chinese).
陈城. 钒钛磁铁矿尾矿库资源量调查及尾矿资源化利用. 硕士学位论文, 西南科技大学, 2020.
61 Yang J Y, Huang L, Tang Y, et al. Environmental Chemistry, 2014, 33(3), 440 (in Chinese).
杨金燕, 黄龙, 唐亚, 等. 环境化学, 2014, 33(3), 440.
62 Sun J, Xu Z Q, Zhao Y X. Advances in Earth Science, 2012, 27(S1), 405 (in Chinese).
孙娇, 徐争启, 赵永鑫. 地球科学进展, 2012, 27(S1), 405.
63 Shi H B, Tang L, Zhao Y, et al. Environmental Science and Management, 2020, 45(11), 68 (in Chinese).
石慧斌, 唐亮, 赵龑, 等. 环境科学与管理, 2020, 45(11), 68.
64 Liu Y D, Xu L, Wang X D, et al. Multipurpose Utilization of Mineral Resources, 2020(6), 84 (in Chinese)
刘应东, 徐力, 王先达, 等. 矿产综合利用, 2020(6), 84.
65 Wang J, Yan G Q. Journal of Building Materials, 2005, 8(4), 423 (in Chinese).
王坚, 严广庆. 建筑材料学报, 2005, 8(4), 423.
66 Gong E C. Jiangxi Building Materials, 2017 (2), 11 (in Chinese).
龚鄂川. 江西建材, 2017 (2), 11.
67 Xu G Q, Liu J H, Qiao L, et al. Journal of Wuhan University of Technology, 2010, 32(21), 22 (in Chinese).
徐国强, 刘娟红, 乔兰, 等. 武汉理工大学学报, 2010, 32(21), 22.
68 Luo L Q, Liu L F, Wang T. Modern Mining, 2010 (2), 11 (in Chinese).
罗立群, 刘林法, 王韬. 现代矿业, 2010 (2), 11.
69 Wang C L, Wang Z J, Yang F H, et al. Preparation of new green building materials from tailings and steel slag, Science Press, China, 2022 (in Chinese).
王长龙, 王肇嘉, 杨飞华, 等. 尾矿及钢渣制备新型绿色建筑材料, 科学出版社, 2022.
70 Li S, Zheng Y C, Chen X F, et al. Metal Mine, 2019 (11), 192 (in Chinese).
李胜, 郑永超, 陈旭峰, 等. 金属矿山, 2019(11), 192.
71 Lin X R. Study on preparation of ready-mixed concrete from vanadium-titanium iron ore tailings as minerals admixture. Master's Thesis, Hebei University of Engineering, 2019 (in Chinese).
吝晓然. 钒钛铁尾矿微粉作为掺合料制备预拌混凝土的研究. 硕士学位论文, 河北工程大学, 2019.
72 Wang Y H, Sheng L, Wang J C, et al. Industrial & Science Tribune, 2015, 14(6), 86 (in Chinese).
王艳辉, 盛龙, 王建臣, 等. 产业与科技论坛, 2015, 14(6), 86.
73 Yang S W, Liu Z R, Yuan G N. New progress in the research and application of chemical admixtures and mineral admixtures in China 2016 Kelong Cup Excellent Paper Collection, 2016, pp.408.
74 Lyu X D, Liu Z A, Zhu Z G, et al. Materials Reprots, 2018, 32(32), 452 (in Chinese).
吕兴栋, 刘战鳌, 朱志刚, 等. 材料导报, 2018, 32(32), 452.
75 Feng J P. Science and Technology Innovation Herald, 2017, 14(11), 101 (in Chinese).
冯冀平. 科技创新导报, 2017, 14(11), 101.
76 Zhang J M, Wang J C, Wang Y H, et al. Ready-Mixed Concrete, 2015(6), 53 (in Chinese).
张建民, 王建臣, 王艳辉, 等. 商品混凝土, 2015(6), 53.
77 Peng H B, Wen G. Sichuan Water Power, 2018, 37(6), 141 (in Chinese).
彭海波, 温革. 四川水力发电, 2018, 37(6), 141.
78 Lyu X D, Dong Y, Wang L. Metal Mine, 2018(8), 191 (in Chinese).
吕兴栋, 董芸, 王磊. 金属矿山, 2018(8), 191.
79 Mao Y Q, Shen X Y, Zhu L P, et al. Journal of Shanghai Polytechnic University, 2018, 35(1), 48 (in Chinese).
毛雨琴, 沈新颖, 朱路平, 等. 上海第二工业大学学报, 2018, 35(1), 48.
80 Wang T Q. South-to-North Water Transfers and Water Science & Technology, 2015, 13(1), 148 (in Chinese).
王铁强. 南水北调与水利科技, 2015, 13(1), 148.
81 Liu Y X, Li X G, Zhang C M, et al. Journal of Building Materials, 2019, 22(4), 538 (in Chinese).
刘云霄, 李晓光, 张春苗, 等. 建筑材料学报, 2019, 22(4), 538.
82 Wang J. Preparation and properties of iron ore tailings porous materials. Master's Thesis, Hebei University of Technology, China, 2015 (in Chinese).
王娟. 铁尾矿多孔材料的制备及其性能研究. 硕士学位论文, 河北工业大学, 2015.
83 Liu J. Preparation and far infrared emission properties of iron tailings composite ceramics. Ph.D. Thesis, Hebei University of Technology, China, 2015 (in Chinese).
刘洁. 铁尾矿复合陶瓷的制备及远红外发射性能研究. 博士学位论文, 河北工业大学, 2015.
84 Li L, Jiang T, Zhou M, et al. IOP Conference Series: Earth and Environmental Science, 2020, 619(1), 012043.
85 Li L, Jiang T, Chen B J, et al. Process Safety and Environmental Protection, 2020, 139, 305
86 He D, Gao C, Pan J. Ceramics International, 2018, 44, 1384
87 Liu M, Xu L H, Di Y P. Express Information of Mining Industry, 2007(6), 53 (in Chinese).
刘明, 徐利华, 邸云萍. 矿业快报, 2007(6), 53.
88 Xi C P, Zheng F, Xu J H, et al. Construction and Building Materials, 2018, 190, 896
89 Shu M Y, Yin H Y. Iron Steel Vanadium Titanium, 2017, 38(4), 74 (in Chinese).
舒明勇, 尹海英. 钢铁钒钛, 2017, 38(4), 74.
90 Guo M B. Express Information of Mining Industry, 2006 (5), 21 (in Chinese).
郭明彬. 矿业快报, 2006 (5), 21.
91 Shi Q, Cui W H, Sui Y L. China Ceramics, 2012, 48(10), 55 (in Chinese).
石棋, 崔文豪, 隋延力. 中国陶瓷, 2012, 48(10), 55.
92 Li H B, He A X, Deng T X, et al. China Ceramics, 1999, 35(1), 3 (in Chinese).
李华彬, 何安西, 邓天秀, 等. 中国陶瓷, 1999, 35(1), 3.
93 Shi L, Song X. Iron Steel Vanadium Titanium, 2020, 41(3), 84 (in Chinese).
石磊, 宋宵. 钢铁钒钛, 2020, 41(3), 84.
94 Zhang J S, Sui Z T, Shen Y M, et al. Iron Steel Vanadium Titanium, 2004, 25(3), 41 (in Chinese).
张巨松, 隋智通, 申延明, 等. 钢铁钒钛, 2004, 25(3), 41.
95 Yang F, Sun X M. Iron Steel Vanadium Titanium, 2020, 41(2), 75 (in Chinese).
杨飞, 孙晓敏. 钢铁钒钛, 2020, 41(2), 75.
96 Li B, Zhao Z, Tang B, et al. IOP Conference Series: Earth and Environmental Science, 2018, 199, 1682.
97 Zhang S, Zheng K, Jiang J, et al. Journal of Materials Research and Technology, 2021, 15, 2686.
98 Luo L Q, Wang Z, Wei J M, et al. China Mining Magazine, 2018, 27(3), 127 (in Chinese).
罗立群, 王召, 魏金明, 等. 中国矿业, 2018, 27(3), 127.
99 Wang S X, Zhang K F, Zhang S H, et al. Metal Mine, 2021(9), 206 (in Chinese).
王绍熙, 张凯帆, 张苏花, 等. 金属矿山, 2021(9), 206.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[10] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[11] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[12] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[13] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[14] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[15] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed