Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23070076-7    https://doi.org/10.11896/cldb.23070076
  无机非金属及其复合材料 |
采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究
褚洪岩1,*, 史文芳1, 王群1, 蒋金洋2
1 南京林业大学土木工程学院,南京 210037
2 东南大学材料科学与工程学院,南京 211189
Feasibility of Preparing Green Cement Mortar via Municipal Solid Waste Incineration Fly Ash
CHU Hongyan1,*, SHI Wenfang1, WANG Qun1, JIANG Jinyang2
1 College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 9274KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 城市生活垃圾焚烧飞灰(MSWIFA)是城市生活垃圾焚烧产生的副产品之一,处理不当会导致严重的环境问题。采用MSWIFA部分替代水泥制备绿色水泥砂浆(GM)能够实现MSWIFA在建筑材料中的资源化利用。本工作主要研究不同替代率的MSWIFA对GM工作性能、力学性能和耐久性能的影响。此外,本工作还表征了GM的微观孔结构和微观形貌。最后,本工作通过分析1 m3GM的能耗、碳排放、生产成本,评估了MSWIFA替代水泥制备GM的经济、社会和生态效益。研究表明:(1)MSWIFA的掺入导致GM的抗折强度、抗压强度分别降低了10.54%~29.97%、18.74%~39.54%;(2)硅酸盐水泥可以固化MSWIFA,GM的重金属浸出满足国家规定限值;(3) 当MSWIFA的替代率为15%时,1 m3GM的能耗、碳排放、生产成本分别降低14.90%、14.63%、10.36%,而其工作性能、力学性能、耐久性依然能够满足建筑砂浆要求,表明采用MSWIFA制备GM能够实现该固体废弃物的资源化利用,具有巨大的经济、社会和生态效益。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚洪岩
史文芳
王群
蒋金洋
关键词:  城市生活垃圾焚烧飞灰  水泥砂浆  力学性能  耐久性  重金属浸出性    
Abstract: Municipal solid waste incineration fly ash (MSWIFA) is one of the by-products of municipal solid waste incineration, and its improper disposal can lead to serious environmental problems. Using MSWIFA to partly replace cement to produce green mortar (GM) can realize the resource utilization of MSWIFA in building materials. This work mainly carried out an investigation on the effects of MSWIFA with different substitution rates on the workability, mechanical properties and durability of GM. Furthermore, the micro pore structure and morphology of GM were also explored. Finally, by analyzing the energy consumption, carbon emission and production cost of 1 m3 GM, the economic, social and ecological benefits of GM produced by replacing cement with MSWIFA were evaluated. It was shown that: (i) due to the incorporation of MSWIFA, the flexural strength and compressive strength of GM were reduced by 10.54%—29.97% and 18.74%—39.54%, respectively; (ii) the heavy metal leaching results of GM could meet the limit value of national standard, which suggested that Portland cement could solidify MSWIFA; (iii) when the substitution rate of MSWIFA was 15%, the energy consumption, carbon emission and production cost of 1 m3GM could be reduced by 14.90%, 14.63% and 10.36%, but its workability, mechanical properties, and durability could still meet the requirements of building mortar. These results indicated that using MSWIFA to produce GM could realize resource utilization of this solid waste, which enjoy great benefits in economic, social and ecologic terms.
Key words:  municipal solid waste incineration fly ash    cement mortar    mechanical property    durability    heavy metal leaching
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU525  
基金资助: 国家自然科学基金(52278262);国家杰出青年科学基金(51925903)
通讯作者:  *褚洪岩,通信作者,南京林业大学土木工程学院副教授、硕士研究生导师。2017年东南大学材料科学与工程专业博士毕业。目前主要从事高性能土木工程材料研发工作,重点研究新型核电牺牲材料和绿色超高性能水泥基材料的制备、表征及应用。发表SCI论文40余篇,包括Cement and Concrete Composites、Construction and Building Materials、Journal of Sustainable Cement-Based Materials等;发表EI论文7篇,包括《硅酸盐学报》《材料导报》《建筑材料学报》等;授权国家发明专利10余件,授权美国发明专利2件。chuhongyan@njfu.edu.cn   
引用本文:    
褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
CHU Hongyan, SHI Wenfang, WANG Qun, JIANG Jinyang. Feasibility of Preparing Green Cement Mortar via Municipal Solid Waste Incineration Fly Ash. Materials Reports, 2024, 38(19): 23070076-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070076  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23070076
1 Wang L, Li X, Zhu F. Environmental Pollution & Control, 2015, 37 (2), 106(in Chinese).
王临清, 李枭鸣, 朱法华. 环境污染与防治, 2015, 37(2), 106.
2 Leckner B O. Waste Management, 2015, 37, 13.
3 Fruergaard T, Astrup T. Waste Management, 2011, 31(3), 572.
4 Hu Y. Study on heavy metal and mechanism of curing/stabilization treatment of cement-based materials. Master's Thesis, East China University of Science and Technology, China, 2021(in Chinese).
胡洋. 水泥基材料固化/稳定化处理生活垃圾焚烧飞灰重金属及机理研究. 硕士学位论文, 华东理工大学, 2021.
5 Zhang Z, Wang J, Li H, et al. Science Technology and Engineering, 2019, 35(19), 395(in Chinese).
张芝昆, 王晶, 李浩天, 等. 科学技术与工程, 2019, 35(19), 395.
6 Jin M. Journal of Environmental Engineering, 2016, 10 (6), 3235(in Chinese).
靳美娟. 环境工程学报, 2016, 10(6), 3235.
7 Bie R, Chen P, Song X, et al. Journal of the Energy Institute, 2016, 89(4), 704.
8 Sobiecka E, Obraniak A, Antizar-Ladislao B. Chemosphere, 2014, 111, 18.
9 Huang F, Gou M, Hao C, et al. China Concrete and Cement Products, 2015(7), 75(in Chinese).
黄飞, 勾密峰, 郝晨风, 等. 混凝土与水泥制品, 2015(7), 75.
10 Yang Z, Ji R, Liu L, et al. Construction and Building Materials, 2018, 162, 794.
11 Rémond S, Pimienta P, Bentz D . Cement and Concrete Research, 2002, 32(2), 303.
12 Tan W, Lv J, Deng Q, et al. Journal of Adhesion Science and Technology, 2016, 30(8), 866.
13 Zhang Y, Dong J, Wang Q. Fly Ash, 2008(2), 34(in Chinese).
张筠, 董景峰, 王琼. 粉煤灰, 2008(2), 34.
14 Xuan D, Poon C S. Journal of Hazardous Materials, 2018, 344, 73.
15 Deng F, Gui Y, Liao Y, et al. Concrete and Cement Products, 2019(12), 94(in Chinese).
邓芳, 桂雨, 廖宜顺, 等. 混凝土与水泥制品, 2019(12), 94.
16 Kan L, Shi R, Zhao Y, et al. Journal of Cleaner Production, 2020, 254, 120168.
17 Zeng C, Yan L, Wang D, et al. Advances in Materials Science and Engineering, 2020, 6, 1.
18 Mangialardi T. Advances in Cement Research, 2004, 16(2), 45.
19 Collivignarelli C, Sorlini S. Waste Management, 2002, 22(8), 909.
20 Aubert J E, Husson B, Sarramone N. Journal of Hazardous Materials, 2006, 136(3), 624.
21 Zhang B, Yang X, Sun F, et al. Journal of Building Materials, 2009, 12 (2), 181(in Chinese).
仉博, 杨晓燕, 孙福成, 等. 建筑材料学报, 2009, 12(2), 181.
22 Saikia N, Kato S, Kojima T. Waste Management, 2007, 27(9), 1178.
23 Bai J, Zhang Z, Yan D, et al. Environmental Engineering, 2012, 30 (2), 104(in Chinese).
白晶晶, 张增强, 闫大海, 等. 环境工程, 2012, 30(2), 104.
24 Ling Y, Jin Y, Nie Y. Environmental Protection Science, 2012, 38 (4), 1(in Chinese).
凌永生, 金宜英, 聂永丰. 环境保护科学, 2012, 38(4), 1.
25 Tian L, Li Y, Yang Y, et al. Environmental Health Engineering, 2020, 28 (3), 8(in Chinese).
田琳, 李媛, 杨玉飞, 等. 环境卫生工程, 2020, 28(3), 8.
26 Zhang Y, Wang L, Chen L, et al. Journal of Hazardous Materials, 2021, 411, 125132.
27 Fan C, Wang B, Qi Y, et al. Waste Management, 2021, 131, 277.
28 Wei J. Research on the dynamic mechanical properties and mechanism analysis of green cement-based composites. Master's Thesis, Shenzhen University, China, 2018(in Chinese).
韦经杰. 绿色水泥基复合材料的动态力学性能研究及机理分析. 硕士学位论文, 深圳大学, 2018.
29 Clavier K A, Paris J M, Ferraro C C, et al. Resources, Conservation and Recycling, 2020, 160, 104888.
30 Xing H, Shu J Z, Hwang J Y. Characterization of Minerals, Metals, and Materials 2016, 2016, 451.
31 Dixit A. Materials Today: Proceedings, 2021, 43, 42.
32 Tang J, Su M, Zhang H, et al. Waste Management, 2018, 76, 225.
33 Wu K, Shi H, Guo X. Waste Management, 2011, 31(9), 2001.
34 Yue P, Shi H, Shu X. Cement, 2003(5), 12(in Chinese).
岳鹏, 施惠生, 舒新玲. 水泥, 2003(5), 12.
35 Li G, Zhao M. Environmental Science and Technology, 2006(10), 39(in Chinese).
李刚, 赵鸣. 环境科学与技术, 2006(10), 39.
36 Zhou H. Study on the efficiency of fly ash incineration in cement. Master's Thesis, Chongqing University, China, 2013(in Chinese).
周欢. 碱矿渣水泥固化城市生活垃圾焚烧飞灰效率研究. 硕士学位论文, 重庆大学, 2013.
37 Li W. Study on the curing mechanism of ultra-high performance concrete based on waste incineration fly ash. Master's Thesis, Qingdao University of Technology, China, 2022 (in Chinese).
李文娟. 基于垃圾焚烧飞灰的超高性能混凝土制备与重金属固化机理研究. 硕士学位论文, 青岛理工大学, 2022.
38 Gao Z. Study on the effect of fly ash alkali metal incineration on leaching toxicity and resource utilization. Master's Thesis, Chongqing University, China, 2021(in Chinese).
高子涵. 城市生活垃圾焚烧飞灰碱金属对浸出毒性的影响及资源化利用研究. 硕士学位论文, 重庆大学, 2021.
39 Liu Z, Li J, Hu L, et al. Sustainability, 2023, 15(1), 364.
40 Chen X. Study on solidification and stabilization of fly ash alkali slag in waste incineration. Master's Thesis, Beijing University of Chemical Technology, China, 2008(in Chinese).
陈曦. 垃圾焚烧飞灰碱矿渣固化稳定化研究. 硕士学位论文, 北京化工大学, 2008.
41 Ji T, Zhang J, Wang C. China Concrete and Cement Products, 2019(12), 87(in Chinese).
季韬, 张检梅, 王灿强. 混凝土与水泥制品, 2019(12), 87.
42 Wang K S, Lin K L, Huang Z Q. Cement and Concrete Research, 2001, 31, 97.
43 Guo X, Shi H. Cement Technology, 2013(3), 29(in Chinese).
郭晓潞, 施惠生. 水泥技术, 2013(3), 29.
44 Li Z, Liu J, Xiao J. Journal of Building Structures, 2020, 41(S2), 427(in Chinese).
李贞, 刘加平, 肖建庄. 建筑结构学报, 2020, 41(S2), 427.
45 Shi H, Liu S, Guo X. Fly Ash Comprehensive Utilization, 2014, 27(6), 22(in Chinese).
施惠生, 刘顺帆, 郭晓潞. 粉煤灰综合利用, 2014, 27(6), 22.
46 Cui L, Cahyadi J. Cement and Concrete Research, 2001, 31(2), 277.
47 Dong S, Wang L, Ashour A, et al. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106011.
48 Zhang P, Han X, Guo J, et al. Fractal and Fractional, 2022, 6(11), 2504.
49 Luo S. Study on the curing effect of heavy metals in waste incineration fly ash. Master's Thesis, East China Jiaotong University, China, 2022(in Chinese).
罗思梦. 垃圾焚烧飞灰中重金属固化效果研究. 硕士学位论文, 华东交通大学, 2022.
50 Xu W, Fu P, Fang G, et al. Conservation and Utilization of Mineral Resources, 2021, 41(3), 10(in Chinese).
许伟航, 傅平丰, 方贵稳, 等. 矿产保护与利用, 2021, 41(3), 10.
51 Liu X, Deng T, Deng Y, et al. Chinese Journal of Geotechnical Engineering, 2023, 45(5), 1072(in Chinese).
刘行, 邓婷婷, 邓永锋, 等. 岩土工程学报, 2023, 45(5), 1072.
52 Symons K. A Bsria Guide, 2011, 164(4), 206.
53 Choi W C, Yun H D, Kang J W, et al. Composites Part B: Engineering, 2012, 43(2), 627.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[10] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[11] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[12] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[13] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[14] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed