Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 22060053-4    https://doi.org/10.11896/cldb.22060053
  无机非金属及其复合材料 |
涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理
胡家宇1,2, 徐菲1, 钱文勋1,*, 肖怀前3, 葛津宇1, 李嘉明1
1 南京水利科学研究院材料结构研究所,南京 210029
2 江苏省水利建设工程有限公司,江苏 扬州 225000
3 江苏省淮沭新河管理处,江苏 淮安 223001
Mechanism of Resting Time on Bond Performance of Polymer Cement-based Coating on Steel Bar
HU Jiayu1,2, XU Fei1, QIAN Wenxun1,*, XIAO Huaiqian3, GE Jinyu1, LI Jiaming1
1 Materials & Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China
2 Jiangsu Water Conservancy Construction Engineering Co., Ltd., Yangzhou 225000, Jiangsu, China
3 Jiangsu Huaishuxin River Administration Bureau, Huai'an 223001, Jiangsu, China
下载:  全 文 ( PDF ) ( 8630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探明由涂层胶凝进程引发的界面过渡区(ITZ)物相经时演变对聚合物水泥基涂层与混凝土保护层间粘接性能的影响机理,制备丙乳与P·O 52.5水泥质量比1∶2的涂层,测试不同涂覆时间下钢筋的握裹力,分析了钢筋涂层与保护层ITZ组成物相的微观形貌及经时演化特征。研究表明:不超过3 h的涂覆时间有利于聚合物水泥基涂层与保护层ITZ中水化硅酸钙(CSH)凝胶的聚合,进而提高钢筋的粘接性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡家宇
徐菲
钱文勋
肖怀前
葛津宇
李嘉明
关键词:  聚合物水泥基涂层  界面过渡区  钢筋握裹力  CSH凝胶  微观分析    
Abstract: To investigate the influence mechanism of the phase evolution of interfacial transition zone (ITZ) caused by the coating gelation process on the bonding properties of polymer-cement based coating and concrete protective layer, a coating with a mass ratio of 1∶2 between acrylate emulsion and P·O 52.5 cement was prepared, and the bonding strength of coated steel bar under different cementing time was tested. The microstructure and time-evolution characteristics of the ITZ components in reinforcement coating and protective coating were characterized. The results show that shorter resting time (<3 h) is beneficial to the polymerization of polymer-cement based coating and calcium silicate hydrate (CSH) between the ITZ, and then improve the bonding properties of coated steel bars.
Key words:  polymer cement-based coating    interfacial transition zone (ITZ)    bonding strength of steel bars    CSH    microscope analysis
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TB37  
基金资助: 国家重点研发计划(2021YFB2600704);国家自然科学基金(52109161);新沂河海口枢纽水利科技项目(HKZJG-KY-01)
通讯作者:  *钱文勋,博士,正高级工程师。现任南京水利科学研究院材料结构研究所副所长,兼任中国土木工程学会混凝土及预应力混凝土分会、江苏省水力发电工程学会和南京硅酸盐学会理事,江苏省“333高层次人才培养工程”中青年科学技术带头人。长期从事水(港)工新材料的研究。主持国家“十三五”重点研发计划专项课题2项,作为专题负责人和项目负责人完成国家自然科学基金重点和面上项目各1项。参与编写《水工混凝土试验规范》《水工混凝土外加剂技术规程》等多部行业规范。wxqian@nhri.cn   
作者简介:  胡家宇,硕士,工程师。南京水利科学研究院材料结构研究所毕业,指导教师为钱文勋正高级工程师。现就职于江苏省水利建设工程有限公司,主研方向钢筋混凝土耐腐蚀新材料。发表学术论文3篇,授权发明专利1项。
引用本文:    
胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
HU Jiayu, XU Fei, QIAN Wenxun, XIAO Huaiqian, GE Jinyu, LI Jiaming. Mechanism of Resting Time on Bond Performance of Polymer Cement-based Coating on Steel Bar. Materials Reports, 2024, 38(17): 22060053-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060053  或          http://www.mater-rep.com/CN/Y2024/V38/I17/22060053
1 Chen X D, Yu A P, Liu G Y, et al. Journal of Building Material, 2019, 22(6), 894(in Chinese).
陈宣东, 虞爱平, 刘光焰, 等. 建筑材料学报, 2019, 22(6), 894.
2 Li S Y, Wang Y L, Liu Z Y, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1621(in Chinese).
李世宇, 王玉龙, 刘志勇, 等. 硅酸盐学报, 2019, 47(11), 1621.
3 Yan D M, Chen G D, Tang F J, et al. Scientia Sinica (Technologica), 2015, 45(3), 293(in Chinese).
闫东明, 陈根达, 唐福建, 等. 中国科学:技术科学, 2015, 45(3), 293.
4 Tang F, Chen G, Brow R K. Cement and Concrete Research, 2016, 82, 58.
5 Deng Y, Fan H, Zhang J. Journal of the Chinese Ceramic Society, 2008(9), 1251(in Chinese).
邓永丽, 樊慧庆, 张洁. 硅酸盐学报, 2008(9), 1251.
6 Shang H S, Wang W Z, Li X H, et al. Journal of Building Material, 2021, 24(2), 348(in Chinese).
商怀帅, 王玮钊, 刘孝华, 等. 建筑材料学报, 2021, 24(2), 348.
7 Ilango N K, Gujar P G, Nagesh A K,et al. Cement and Concrete Composites, 2021, 115, 103856.
8 Liang R, Liu Q, Hou D, et al. Cement and Concrete Research, 2022, 152, 106675.
9 Zhang G F, Wang S X, Lu X P, et al. Journal of Building Material, 2019, 22(2), 173(in Chinese).
张国防, 王顺祥, 陆小培, 等. 建筑材料学报, 2019, 22(2), 173.
10 Jo Y K, Jeong S H, Kim W K. Advanced Materials Research, 2013, 687, 175.
11 Wang M, Wang R, Zheng S, et al. Cement and Concrete Research, 2015, 69, 62,
12 Ma D D, Ma Q Y, Huang K, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(3), 572(in Chinese).
马冬冬, 马芹永, 黄坤, 等. 岩土工程学报, 2021, 43(3), 572.
13 Wang L, He Z, Zhang B, et al. Journal of Building Materials, 2011, 14(4), 447(in Chinese).
王磊, 何真, 张博, 等. 建筑材料学报, 2011, 14(4), 447.
14 Zhou Y, Tang L, Liu J, et al. Cement and Concrete Research, 2019, 125, 105891.
15 Zhao L. Effect of PC modified GO on the reinforcement of cement composites. Ph. D. Thesis, Southeast University, China, 2018 (in Chinese).
赵丽. PC改性GO对水泥基复合材料的强化及其机理研究. 博士学位论文, 东南大学, 2018.
[1] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[2] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[3] 曹梦媛, 于素慧, 袁健, 王炜, 张少辉, 王艳. CO2养护煤矸石粗骨料性能研究[J]. 材料导报, 2024, 38(14): 23030104-8.
[4] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[5] 冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
[6] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[7] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[8] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[9] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[10] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[11] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[12] 张高展, 葛竞成, 张春晓, 杨军, 刘开伟, 王爱国, 孙道胜. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133.
[13] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[14] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[15] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed