Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23010017-10    https://doi.org/10.11896/cldb.23010017
  无机非金属及其复合材料 |
陶瓷膜在饮用水处理中的应用现状
高正源, 白佳龙, 孙鹏飞*, 安治国
重庆交通大学机电与车辆工程学院,重庆 400074
Application Status of Ceramic Membrane in Drinking Water Treatment
GAO Zhengyuan, BAI Jialong, SUN Pengfei*, AN Zhiguo
School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 12050KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水是人类生存所必需的资源。近年来,我国的饮用水水质标准不断提高。为了满足更高的标准,自来水厂开始使用膜过滤技术取代传统过滤技术。作为一种先进的水处理技术,膜过滤技术已经在各个领域得到广泛应用。与有机膜相比,陶瓷膜具有化学性能稳定、耐酸碱、热稳定性好、机械强度高、回收率高、使用寿命长等优点,在饮用水领域有更广阔的应用前景。本文旨在阐述陶瓷膜的结构特点和过滤机理,并探讨陶瓷膜在饮用水处理中的研究进展。通过对陶瓷膜饮用水处理工艺进行分析,发现原水经过混凝、吸附、臭氧氧化预处理后,陶瓷膜的过滤性能有明显的提升。文章还分析了陶瓷膜的抗污染性能,并强调了其在维护成本方面的优势。最后,对优化陶瓷膜成本、多元陶瓷膜集成工艺和陶瓷膜大规模运行成本估算等未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高正源
白佳龙
孙鹏飞
安治国
关键词:  陶瓷膜  饮用水  过滤工艺  混凝  吸附过滤  臭氧氧化  膜污染    
Abstract: Water is an essential resource for human survival. In recent years, China’s drinking water quality standards have been continuously improving. In order to meet the higher standard, a certain number of waterworks began to use membrane filtration technology to replace the traditional filtration technology. Membrane filtration technology, as an advanced water treatment technique, has been widely used in various fields. Compared to organic membranes, ceramic membranes have more extensive potential applications in the field of drinking water, due to their stable chemical properties, acid and alkali resistance, good thermal stability, high mechanical strength, high recovery rate, and long service life. This paper aims to elucidate the structural characteristics and filtration mechanism of ceramic membranes, and explore the research progress of ceramic membranes in drinking water treatment. By analyzing of ceramic membrane drinking water treatment process, it is found that the filtration perfor-mance of ceramic membranes is significantly improved after pretreatment steps such as coagulation, adsorption, and ozone oxidation. The article also analyzes the fouling resistance of ceramic membranes and emphasizes their advantages in terms of maintenance costs. Finally, directions for future research are proposed, including optimizing the cost of ceramic membranes, exploring diversified integrated processes for ceramic membranes, and estimating the operational costs of large-scale ceramic membrane systems.
Key words:  ceramic membrane    drinking water    filtration process    coagulation    adsorption filtration    ozone oxidation    membrane pollution
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TQ028.8  
基金资助: 国家自然科学基金(22272013)
通讯作者:  *孙鹏飞,工学博士。2006年在北京科技大学材料科学与工程学院取得学士学位,2013年在北京科技大学新金属材料国家重点实验室取得博士学位(硕博连读)。现为重庆交通大学机电与车辆工程学院讲师。主要研究方向为材料表面/界面反应机理及其应用。发表SCI/EI收录论文10余篇,获授权发明专利4项,省部级科技奖励2项。danny25@163.com   
作者简介:  高正源,重庆大学和曼彻斯特大学联合培养博士研究生,重庆交通大学机电与车辆工程学院教授、硕士研究生导师。主要从事机械工程材料、轻金属材料与表面工程方面的教学、研究和开发工作。发表SCI/EI高水平论文50余篇,获得授权国家专利4项(国外2项),省部级科技奖励2项,发布实施国家标准4项;著作1本;应邀担任多学会领导和国内外期刊编审人。
引用本文:    
高正源, 白佳龙, 孙鹏飞, 安治国. 陶瓷膜在饮用水处理中的应用现状[J]. 材料导报, 2024, 38(16): 23010017-10.
GAO Zhengyuan, BAI Jialong, SUN Pengfei, AN Zhiguo. Application Status of Ceramic Membrane in Drinking Water Treatment. Materials Reports, 2024, 38(16): 23010017-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010017  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23010017
1 Parimal Pal. Membrane-Based Technologies for Environmental Pollution Control, Elsevier Inc, NL, 2020, pp. 513.
2 Li X F, Dai C H, Sun H S. Filtration and Separation, 2006, 16(1), 8 (in Chinese).
李祥锋, 戴长虹, 孙海生. 过滤与分离, 2006, 16(1), 8.
3 Zhu H X, Xue L D, Liu J B, et al. Environmental Scientific Research, 2020, 33(7), 1640 (in Chinese).
朱红霞, 薛荔栋, 刘进斌, 等. 环境科学研究, 2020, 33(7), 1640.
4 Mohd Aamir Mazhar, Nadeem A Khan, Sirajuddin Ahmed, et al. Journal of Cleaner Production, 2020, 273, 1.
5 Goswami K P, Pugazhenthi G. Journal of Environmental Management, 2020, 268, 1.
6 Gao Y T, Chen W B, Wen M D, et al. Industrial Water and Wastewater, 2021, 52(2), 6 (in Chinese).
高玉婷, 陈文兵, 温明铎, 等. 工业用水与废水, 2021, 52(2), 6.
7 Xia S J, Li X, Yao J, et al. Desalination, 2007, 222(1), 497.
8 Alexander Hög, Johanna Ludwig, Matan Beery. Journal of Water Process Engineering, 2015, 6, 129.
9 Cui J, Wang H L, Long J. Industrial Water Treatment, 2011, 31(2), 13 (in Chinese).
崔佳, 王鹤立, 龙佳. 工业水处理, 2011, 31(2), 13.
10 Xu C. Research on the treatment technology of oil field wastewater with ceramic membrane. Master’s Thesis, China University of Petroleum, China, 2010 (in Chinese).
徐超. 油田含油污水陶瓷膜处理技术研究. 硕士学位论文, 中国石油大学, 2010.
11 Qiu M G, Chen X F, Fan Y Q, et al. Comprehensive Membrane Science and Engineering II. Elsevier Inc, NL, 2017, pp. 270.
12 Kong F P, Liu L, Zhao H F, et al. Food and Machinery, 2010, 26(5), 51 (in Chinese).
孔凡丕, 刘鹭, 赵慧芳, 等. 食品与机械, 2010, 26(5), 51.
13 Zhang B B, Zhong Z X, Xing W H. Membrane Science and Technology, 2011, 31(4), 42 (in Chinese).
张兵兵, 仲兆祥, 邢卫红. 膜科学与技术, 2011, 31(4), 42.
14 Zhou J E, Chang Q B, Wang Y Q, et al. Separation and Purification Technology, 2010, 75(3), 243.
15 Lin Li, Hamidreza Abadikhah, Jun Wei Wang, et al. Materials Letters, 2018, 232, 74.
16 Judd S J. Chemical Engineering Journal, 2016, 305, 37.
17 Julia Werner, Benjamin Besser, Christoph Brandes, et al. Journal of Water Process Engineering, 2014, 4, 201.
18 Katie Guerra, John Pellegrino. Separation Science and Technology, 2013, 48(1), 51.
19 Moulin C, Bourbigot M M, Tazi-Pain A, et al. Environmental Technology, 1991, 12(10), 841.
20 Ma B, Li M J, Chen Z P. Water Supply and Drainage in China, 2016, 32(10), 11 (in Chinese).
马骉, 李梦洁, 陈志平. 中国给水排水, 2016, 32(10), 11.
21 Bottino A, Capannelli C, Del Borghi A, et al. Desalination, 2001, 141(1), 75.
22 Sui X D, Huang X R. Journal of Membrane Science and Technology, 2004(1), 54 (in Chinese).
隋贤栋, 黄肖容. 膜科学与技术, 2004(1), 54.
23 Guo Jianning, Wang Lingyun, Zhu Jia, et al. Journal of Environmental Science and Health, Part A, 2013, 48(11), 1413.
24 Sangyoup Lee, Jaeweon Cho. Desalination, 2004, 160(3), 223.
25 Wu Y, Yang Y L, Li X, et al. China Environmental Science, 2014, 34(1), 150 (in Chinese).
邬艳, 杨艳玲, 李星, 等. 中国环境科学, 2014, 34(1), 150.
26 Li Mingyuan, Wu Guangxue, Guan Yuntao, et al. Desalination, 2011, 280(1), 114.
27 Zhang Huiqin, Zhong Zhaoxiang, Li Weixing, et al. Chinese Journal of Chemical Engineering, 2014, 22(1), 113.
28 Zhang Xiaolei, Fan Linhua. Separation and Purification Technology, 2014, 133, 221.
29 Zhao Y C, Liang X Y, Huang Y D, et al. Industrial Water and Wastewater, 2020, 51(1), 11 (in Chinese).
赵元琛, 梁心怡, 黄一荻, 等. 工业用水与废水, 2020, 51(1), 11.
30 Qiu Y T, Luo Y L, Zhang T X, et al. Environmental Research, 2021, 196, 110942.
31 Du Xing, Yang Wupeng, Liu Yao, et al. Separation and Purification Technology, 2020, 252, 117492.
32 He J L, Hu X F, Peng J H. Urban Water Supply, 2021(1), 43 (in Chinese).
何嘉莉, 胡小芳, 彭进湖. 城镇供水, 2021(1), 43.
33 Asif M B, Ren B, Li C, et al. Science of the Total Environment, 2020, 745, 141090.
34 Yoshihiko Matsui, Hiroki Hasegawa, Koich Ohno, et al. Water Research, 2009, 43(20), 5160.
35 Oh H K, Takizawa S, Ohgaki S, et al. Desalination, 2005, 202(1), 191.
36 Joseph G. Jacangelo, Samer S. Adham, Jean-Michel Laîné. American Water Works Association, 1995, 87(9), 107.
37 Chun Youngpil, Hua Tao, Anantharaman Aditya, et al. Desalination, 2021, 506, 115016.
38 Yu H J, Li X S, Li T, et al. China Environmental Science, 2023, 43(8), 3909(in Chinese).
于洪鉴, 李潇洒, 李甜 等. 中国环境科学, 2023, 43(8), 3909.
39 Wang M G, Cen Q H, Zeng R, et al. Journal of Environmental Chemical Engineering, 2022, 10(5), 108472.
40 López Zavala Miguel Ángel, Frías Bouchez Bernardo. Ceramics International, 2022, 48(21), 31695.
41 Wang S X, Wu Q Q, Yan B Y, et al. Separation and Purification Technology, 2022, 291, 120874.
42 Ainscough T J, Alagappan P, Oatley-Radcliffe D L, et al. Journal of Water Process Engineering, 2017, 19, 220.
43 Khaled Ibn Abdul Hamid, Peter Sanciolo, Stephen Gray, et al. Water Research, 2017, 126, 308.
44 Guo J N, Zhang X H, Hu J Y, et al. Acta Scientiae Circumstantiae, 2013, 33(4), 968 (in Chinese).
郭建宁, 张锡辉, 胡江泳, 等. 环境科学学报, 2013, 33(4), 968.
45 Zhang J G, Sheng D Y, Guo J N, et al. Water Treatment Technology, 2012, 38(3), 122 (in Chinese).
张建国, 盛德洋, 郭建宁, 等. 水处理技术, 2012, 38(3), 122.
46 Zhang X H, Fan X J, Wei D Q, et al. Water Supply and Wastewater, 2014, 50(1), 120 (in Chinese).
张锡辉, 范小江, 韦德权, 等. 给水排水, 2014, 50(1), 120.
47 Liu B M, Wang X X, Gu Y F, et al. Acta Scientiae Circumstantiae, 2020, 40(9), 3224 (in Chinese).
刘宝明, 王夕希, 顾艳芳, 等. 环境科学学报, 2020, 40(9), 3224.
48 Jiang T, Tian T, Guan Y F, et al. Water Research, 2022, 220, 118702.
49 Hou C Y, Chen Y, Dong Y W, et al. Water Research, 2022, 222, 118881.
50 Wei Gao, Heng Liang, Jun Ma, et al. Desalination, 2011, 272, 1.
51 Shen Yuexiao, Zhao Wentao, Xiao Kang, et al. Journal of Membrane Science, 2010, 346, 187.
52 Guo J N. Research on the treatment of micro-polluted drinking water by ceramic membrane and its integrated process. Ph. D. Thesis, Tsinghua University, China, 2013 (in Chinese).
郭建宁. 陶瓷膜及其集成工艺处理微污染饮用水的研究. 博士学位论文, 清华大学, 2013.
53 Yu C H, Wu C H, Lin C H, et al. Separation and Purification Technology, 2008, 64(2), 206.
54 NoHwa Lee, Gary Amy, Jean-Philippe Croué, et al. Water Research, 2004, 38(20), 4511.
55 Fan L, Harris J L, Roddick F A, et al. Water Research, 2001, 35(18), 4455.
56 Wei Y, Zydney A L. Membrane Science, 1999, 157(1), 14.
57 Schäfer A I, Schwicker U, Fischer M M, et al. Membrane Science, 2000, 171(2), 151.
58 Waeger F, Delhaye T, Fuchs W. Separation and Purification Technology, 2010, 73(2), 271.
59 Lee S J, Kim J H. Water Research, 2014, 48(Jan. 1), 43.
60 Zhao Yangying, Wang Xiaomao, Yang Hongwei, et al. Membrane Science, 2018, 563, 734.
61 Alresheedi M T, Barbeau B, Basu O D. Separation and Purification Technology, 2018, 209, 452.
62 Jarvis P, Carra I, Jafari M, et al. Water Research, 2022, 215, 118.
63 Yu Q H, Zhu J M, Zhao Q Q, et al. Membrane Science and Technology, 2022, 42(5), 164 (in Chinese).
于庆海, 朱家明, 赵倩倩, 等. 膜科学与技术, 2022, 42(5), 164.
64 Tong Z, Huang K P, Zhang B W, et al. Materials Reports, 2021, 35(6), 6054 (in Chinese).
同帜, 黄开佩, 杨博文, 等. 材料导报, 2021, 35(6), 6054.
65 Yan X, Tong Z, Wang J Y, et al. Journal of Synthetic Crystals, 2019, 48(7), 1208 (in Chinese).
闫笑, 同帜, 王佳悦, 等. 人工晶体学报, 2019, 48(7), 1208.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[10] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[11] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[12] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[13] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[14] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[15] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed