Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23030088-11    https://doi.org/10.11896/cldb.23030088
  无机非金属及其复合材料 |
钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响
陈聪聪1,2, 吴泽媚1,2,*, 胡翔1,2, 史才军1,2,*
1 湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
2 湖南省绿色先进土木工程材料国际科技创新合作基地,长沙 410082
Influence of Steel Fiber Shape and Curing System on Strength and Toughness of UHPC
CHEN Congcong 1, 2, WU Zemei1,2,*, HU Xiang1,2, SHI Caijun1,2,*
1 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technologies of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
2 International Science and Technology Innovation Center for Green & Advanced Civil Engineering Materials of Hunan Province, Changsha 410082, China
下载:  全 文 ( PDF ) ( 18287KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热养护和掺加异形钢纤维是提高超高性能混凝土(UHPC)强度并改善韧性的有效技术手段。研究了养护制度(标准养护28 d、90 ℃蒸汽养护2 d、90 ℃热水养护2 d)和钢纤维形状(平直形、波纹形、端钩形)对UHPC立方体抗压强度、单轴抗压强度、抗折性能的影响,采用ASTM C1018、JSCE-SF4、修正的Post-Crack Energy Ratio(PCER)三种韧性表征方法对UHPC弯曲韧性进行评价,并借助三维光学扫描仪定量表征了掺加不同形状钢纤维的UHPC断裂面粗糙度。结果表明,相较于28 d标准养护,2 d热水养护和2 d蒸汽养护均能在一定程度上提高UHPC力学性能,且对UHPC抗折性能的提升较为显著。与掺平直形钢纤维的UHPC相比,掺端钩形钢纤维的UHPC的抗折强度和PCER韧性指标分别提升46.26%~58.82%和32.77%~39.81%,断裂面粗糙度提高41.67%;粗糙度参数与弯曲韧性具有良好的指数关系,可用于UHPC韧性的表征。此外,单轴抗压强度与立方体抗压强度存在线性关系,相关系数为0.83~0.93。采用ASTM C1018和PCER方法计算出的韧性结果与采用4 mm挠度处荷载-位移曲线包围的面积和抗折性能指标结果基本一致,提出的PCER方法引入初始弯曲韧度比来表征UHPC达到峰值挠度前的弯曲韧性,使得计算结果更为准确。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈聪聪
吴泽媚
胡翔
史才军
关键词:  超高性能混凝土(UHPC)  养护制度  钢纤维形状  强度  韧性    
Abstract: Thermal curing and adding deformed steel fibers are effective in improving strength and toughness of UHPC. In this work, the effects of curing regime (28 d standard curing, 2 d of 90 ℃ steam curing, and 2 d of 90 ℃ hot water curing) and steel fiber shape (straight, corrugated, and hooked) on cubic compressive strength, uniaxial compressive strength, and flexural properties of UHPC were studied. ASTM C1018, JSCE-SF4, and modified Post-Crack-Energy Ratio (PCER) were used to evaluate the flexural toughness of UHPC. The 3D optical scanner was used to quantify the roughness of the fracture surface of UHPC with different steel fiber shapes. The results show that 2 d of hot water curing and steam curing improved the mechanical properties of UHPC to a certain extent, and the flexural properties of UHPC were significantly improved, in comparison to 28 d standard curing. Compared to UHPC with straight steel fibers, UHPC with hooked steel fibers increased the flexural strength and PCER toughness index by 46.26%—58.82% and 32.77%—39.81%, respectively, and enhanced the fracture surface roughness RN by 41.67%. A good exponential relationship is found between roughness parameters and bending toughness, and the roughness parameter can be used to characterize the toughness of UHPC. Besides, a linear relationship between uniaxial compressive strength and cubic compressive strength was found, and the correlation coefficient ranged from 0.83 to 0.93. The toughness indexes evaluated using ASTM C1018 and PCER methods were basically consistent with the results obtained by using the area enclosed by load-displacement curve at 4 mm deflection and the flexural properties. The proposed modified PCER method introduced the initial flexural toughness ratio to characterize the flexural toughness before reaching the peak deflection, which rendered more accurate calculation results.
Key words:  ultra-high performance concrete(UHPC)    curing regime    steel fiber shape    strength    toughness
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TU528  
基金资助: 国家自然科学基金 (52008164);湖南省自然科学基金(2022JJ30144);中央高校基本科研专项资金(531118010484)
通讯作者:  * 吴泽媚,国家高层次青年人才,博士研究生导师,获密苏里科技大学博士学位并从事博士后研究。主要研究领域为新型道路建筑材料的设计、研发与应用,包括高性能与超高性能混凝土微观与性能研究及模拟、"双碳"战略下工业固体废弃物在建筑材料中的综合利用、长寿命道路新材料的研发及应用等。发表英文著作/章节2部,学术论文70余篇,其中SCI论文40余篇,ESI高被引论文3篇,入选斯坦福大学发布的2023年度“全球前2%顶尖科学家榜单”(World’s Top 2% Scientists)。主编/参编行业与地方标准5项,授权发明专利3项。wuzemei@hnu.edu.cn
史才军,乌克兰工程院外籍院士、国家特聘专家、湖南省特聘专家、亚洲混凝土联合会主席,湖南大学 985工程创新平台首席科学家、特聘教授、建筑安全和节能重点实验室教育部主任、绿色高性能土木工程材料及应用技术湖南省重点实验室主任、湖南省绿色高性能土木工程材料国际创新科技合作基地主任、博士研究生导师。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面开展了广泛深入的研究工作,发表高水平学术论文540余篇。出版英文著作8部,中文著作4部,合编国际会议英文论文集11本。2015—2020年“建设与建造”领域中国高被引学者排名第一,在斯坦福大学Ioannidis教授团队发布的“2021年度科学影响力排行榜”和“终身科学影响力排行榜(1960—2021)”的榜单上,在建筑和建造领域分别排名第2和第4,2001年、2007年和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士。cshi@hnu.edu.cn   
引用本文:    
陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
CHEN Congcong, WU Zemei, HU Xiang, SHI Caijun. Influence of Steel Fiber Shape and Curing System on Strength and Toughness of UHPC. Materials Reports, 2024, 38(15): 23030088-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030088  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23030088
1 Ouyang X, Shi C J, Shi J H, et al. Journal of the Chinese Ceramic Society, 2021, 49(2), 296 (in Chinese).
欧阳雪, 史才军, 史金华, 等. 硅酸盐学报, 2021, 49(2), 296.
2 Shi C J, Wu Z M, Xiao J F, et al. Construction and Building Materials, 2015, 101(5), 741.
3 Blais P Y, Couture M. PCI journal, 1999, 44(5), 121.
4 Zhou M, Lu W, Song J, et al. Construction and Building Materials, 2018, 186, 67.
5 Du J, Meng W, Khayat K H, et al. Composites Part B:Engineering, 2021, 224, 109.
6 Shi C J, He W, Wu Z M, et al. Bulletin of the Chinese Ceramic Society, 2015, 34 (8), 27 (in Chinese).
史才军, 何稳, 吴泽媚, 等. 硅酸盐通报, 2015, 34(8), 27.
7 Banthia N, Trottier J F. ACI Materials Journal, 1995, 92(2), 146.
8 Wang D H, Shi C J, Wu L M. Bulletin of the Chinese Ceramic Society, 2016, 35 (1), 141 (in Chinese).
王德辉, 史才军, 吴林妹. 硅酸盐通报, 2016, 35(1), 141.
9 Shi J H, Shi C J, Ouyang X, et al. Materials Reports, 2021, 35(3), 75 (in Chinese).
史金华, 史才军, 欧阳雪, 等. 材料导报, 2021, 35(3), 75.
10 Wu Z, Shi C, He W, et al. Construction and Building Materials, 2016, 103, 8.
11 Wu Z, Shi C, He W, et al. Journal of Materials in Civil Engineering, 2016, 28(12), 06016017.
12 Su J, Shi C J, Qin H J, et al. Journal of the Chinese Ceramic Society, 2020, 48 (11), 1740 (in Chinese).
苏捷, 史才军, 秦红杰, 等. 硅酸盐学报, 2020, 48(11), 1740.
13 Ren G, Wu H, Fang Q, et al. Construction and Building Materials, 2018, 164, 29.
14 Othman H, Marzouk H, Sherif M. Construction and Building Materials, 2019, 195, 547.
15 Lu Z, Feng Z G, Yao D D, et al. Materials Reports, 2020, 34 (Z1), 203 (in Chinese).
卢喆, 冯振刚, 姚冬冬, 等. 材料导报, 2020, 34(Z1), 203.
16 Peng G F, Niu X J, Zhao Y L. Journal of Building Materials, 2016, 19 (6), 1013 (in Chinese).
朋改非, 牛旭婧, 赵怡琳. 建筑材料学报, 2016, 19(6), 1013.
17 Grzelka M, Majchrowski R, Sadowski . Materials and Structures, 2011, 7(251), 97.
18 Carpinteri A, Chiaia B. Materials and Structures, 1995, 28, 435.
19 Sabir B, Wild S, Asili M. Cement and Concrete Research, 1997, 27(5), 785.
20 Carpinteri A, Chiaia B. International Journal of Fracture, 1996, 76, 327.
21 Wu K R, Yan A, Liu J Y, et al. Cement and Concrete Research, 2000, 30(6), 981.
22 Czarnecki S, Hoła J. International Journal of Adhesion and Adhesives, 2016, 67, 3.
23 Issa M A, Issa M A, Islam M S, et al. Engineering Fracture Mechanics, 2003, 70(1), 125.
24 Kurtis K E, El-Ashkar N H, Collins C L, et al. Cement and Concrete Composites, 2003, 25(7), 695.
25 Erdem S, Blankson M A. Construction and Building Materials, 2013, 40, 70.
26 Helmi M, Hall M R, Construction and Building Materials, 2016, 105, 554.
27 Li G L, Shi C J, Wu Z M, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(10), 3316(in Chinese).
李港来, 史才军, 吴泽媚, 等. 硅酸盐通报, 2021, 40(10), 3316.
28 Peng Y Z, Yang W, Zhu Q S. Applied Mechanics and Materials, 2012, 204, 3989.
29 Huo X S, Wong L U. Construction and Building Materials, 2006, 20(10), 1049.
30 Saly F, Sun W. Journal of Southeast University (English Edition), 2014, 30(3), 348(in Chinese).
Saly Fathy, 孙伟. 东南大学学报, 2014, 30(3), 348.
31 Halit Yazıcı, Mert Yücel Yardımcı, Serdar Aydın, et al. Construction and Building Materials, 2008, 23(3), 23.
32 Deniz E, Baradan B. Construction and Building Materials, 2013, 42, 53.
33 Wu Z M, Shi C J, He W. Construction and Building Materials, 2017, 136, 307.
34 Han J G, Yan P Y. China Concrete, 2010, 5(11), 42(in Chinese).
韩建国, 阎培渝. 混凝土世界, 2010, 5(11), 42.
35 GB/T 2419-2005, 水泥胶砂流动度测定方法, 北京, 2005.
36 CECS 13-2009, 纤维混凝土试验方法标准, 北京, 2009.
37 Zeng W, Ding Y N. Acta Materiae Compositae Sinica, 2020, 37(9), 2303(in Chinese).
曾伟, 丁一宁. 复合材料学报, 2020, 37(9), 2303.
38 Hou S, Shi C, Li K, et al. In:the 16th International Congress on the Chemistry of Cement 2023 (ICCC2023). Bangkok, 2023, pp.653.
39 Hou S, Li K, Wu Z, et al. Cement and Concrete Composites, 2022, 127, 104404.
40 Ding Y, Li D, Zhang Y. Composite Structures, 2018, 187, 325.
41 Ficker T, Martišek D, Jennings H M. Cement and Concrete Research, 2010, 40(6), 947.
42 Xin Y B, Hsia K J, Lange D A. Journal of the American Ceramic Society, 1995, 78(12), 3201.
43 Apedo K L, Montgomery P, Serres N, et al. Materials Characterization, 2016, 118, 212.
44 Lange D A, Jennings H M, Shah S P. Journal of the American Ceramic Society, 1993, 76(3), 589.
45 Zhou H, Xie H. Surface Review and Letters, 2003, 10(5), 751.
46 Wang D, Shi C, Wu Z, et al. Construction and Building Materials, 2015, 96, 368.
47 Wu Z, Khayat K H, Shi C. Cement and Concrete Composites, 2018, 90, 193.
48 Wu Z, Shi C, Khayat K H. Composites Part B:Engineering, 2019, 174, 107021.
49 Hu A X, Liang X W, Yu J, et al. Journal of Hunan University(Natural Sciences), 2018, 45 (9), 30 (in Chinese).
胡翱翔, 梁兴文, 于婧, 等. 湖南大学学报 (自然科学版), 2018, 45(9), 30.
50 Li L, Tao J C, Cao M L, et al. Acta Materiae Compositae Sinica, 2022, 39 (11), 5377(in Chinese).
李黎, 陶佳诚, 曹明莉, 等. 复合材料学报, 2022, 39(11), 5377.
51 Yang J, Fang Z. China Journal of Highway and Transport, 2009, 22 (1), 39(in Chinese).
杨剑, 方志. 中国公路学报, 2009, 22(1), 39.
52 Chang Y F, Shi J P, Hou Y P. Bulletin of the Chinese Ceramic Society, 2021, 40(10), 3385(in Chinese).
常亚峰, 师俊平, 侯亚鹏. 硅酸盐通报, 2021, 40(10), 3385.
53 Zhang W H, Zhang Z X, Liu P Y, et al. Journal of the Chinese Ceramic Society, 2020, 48 (8), 1(in Chinese).
张文华, 张仔祥, 刘鹏宇, 等. 硅酸盐学报, 2020, 48(8), 1.
54 Xiao Z L, Yang D Y, Qian Y F, et al. Hans Journal of Civil Engineering, 2021(10), 542(in Chinese).
肖志龙, 杨鼎宜, 钱云峰, 等. 土木工程, 2021(10), 542.
55 Huang W R, Yang Y Z, Liu Y J, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1747(in Chinese).
黄维蓉, 杨玉柱, 刘延杰, 等. 硅酸盐学报, 2020, 48(11), 1747.
56 Liang X W, Wang Z Y, Yu J, et al. China Civil Engineering Journal, 2018, 51 (10), 56(in Chinese).
梁兴文, 王照耀, 于婧, 等. 土木工程学报, 2018, 51(10), 56.
57 Fang Z, Xiang Y, Liu C L. Journal of Building Structures, 2013, 34(1), 101(in Chinese).
方志, 向宇, 刘传乐. 建筑结构学报, 2013, 34(1), 101.
58 Lyu X Y, Wang Y, Fu C J, et al. Journal of Harbin Institute of Technology, 2014, 46(10), 1(in Chinese).
吕雪源, 王英, 符程俊, 等. 哈尔滨工业大学学报, 2014, 46(10), 1.
59 Wang Q W, Shi Q X, Tao Y, et al. Journal of Building Materials, 2020, 23(6), 1381(in Chinese).
王秋维, 史庆轩, 陶毅, 等. 建筑材料学报, 2020, 23(6), 1381.
60 Fan T, Yang H, Gao Y T, et al. Concrete structure design, Chongqing University Press, China, 2017, pp.65(in Chinese).
范涛, 杨虹, 高涌涛, 等. 混凝土结构设计, 重庆大学出版社, 2017, pp.65.
61 Nie J, Li C X, Qian G P, et al. Materials Reports, 2021, 35(4), 42(in Chinese).
聂洁, 李传习, 钱国平, 等. 材料导报, 2021, 35(4), 42.
62 Luo Y L, Gao Y X, Yan X Y, et al. Materials Reports, 2021, 35 (Z1), 242(in Chinese).
罗遥凌, 高育欣, 闫欣宜, 等. 材料导报, 2021, 35(Z1), 242.
63 Niu X J, Peng G F, Shang Y J, et al. Journal of the Chinese Ceramic Society, 2018, 46 (8), 1141(in Chinese).
牛旭婧, 朋改非, 尚亚杰, 等. 硅酸盐学报, 2018, 46(8), 1141.
64 Weerheijm J. Delft University of Technology, 1992, 5(23), 992.
65 Kumar S, Barai S V, Kumar S, et al. Concrete Fracture Models and Applications, 2011, 32(5), 9.
66 Huang Y, Huang J, Zhang W, et al. Composite Structures, 2023, 309, 116.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[5] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[6] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[7] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[8] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[9] 刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
[10] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[11] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[12] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[13] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[14] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[15] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed