Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22120181-6    https://doi.org/10.11896/cldb.22120181
  高分子与聚合物基复合材料 |
纳米纤维素基复合材料在锂硫电池中的应用研究进展
黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝*
陕西科技大学轻工科学与工程学院,西安 710021
Research Progress in Application of Nano-Cellulose Based Composites in Lithium-Sulfur Batteries
HUANG Shaoyan, XIU Huijuan, WANG Zhixiong, FAN Sha, WANG Simin, DENG Zili, LI Na, LI Jinbao*
School of Light Industry Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 17770KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂硫电池因具有高的理论比容量和能量密度,成为极具应用前景的下一代储能器件。纳米纤维素基材料因其独特的多孔网状结构和理化特性,在锂硫电池的开发研究中受到广泛关注。本文在简要介绍锂硫电池基本工作原理的基础上,分析了阻碍其商业化发展的问题和面临的挑战。针对纳米纤维素的独特结构和优异性能,重点综述了纳米纤维素基复合材料在锂硫电池中的最新研究进展,包括作为隔膜、阴极材料和其他组件等,有效缓解“穿梭效应”“体积膨胀”和“锂枝晶”等关键难题,明显提升了电池的电化学性能与使用寿命。此外,还介绍了纳米纤维素基复合材料在未来发展中亟待解决的问题,并对纤维素基锂硫电池器件的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄少炎
修慧娟
王志雄
樊莎
王思敏
邓自立
李娜
李金宝
关键词:  纳米纤维素  锂硫电池  复合材料  电池隔膜  阴极材料    
Abstract: Lithium-sulfur battery has high theoretical specific capacity and energy density, which makes it a promising candidate as the next-generation energy storage device. In the research and development of lithium-sulfur batteries, nanocellulose-based materials have attracted extensive attention due to their unique network structure and the physicochemical properties. The present paper starts by introducing the basics of lithium-sulfur battery, and further analyzes the challenges hindering its commercialization. The paper also reviews the latest research of nanocellulose-based materials in lithium-sulfur batteries, from the perspectives of the unique structure and excellent performance of nanocellulose. It can be concluded that nanocellulose-based materials can serve as separators, cathode materials, and other components, and can alleviate critical problems is Li-S battries including ‘shuttle effect', ‘volume expansion' and ‘lithium dendrite', and also significantly improve the electrochemical performance and service life. Finally, the challenges to nanocellulose-based composites and the outlook for cellulose-based lithium-sulfur batteries are discussed.
Key words:  nano cellulose    lithium sulfur battery    compound material    battery diaphragm    cathode material
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TM912  
  TQ352.7  
基金资助: 浙江省重点研发计划项目(2022C02074)
通讯作者:  *李金宝,陕西科技大学轻工科学与工程学院教授、博士研究生导师。目前主要从事纤维素基功能材料、高性能纤维纸基功能材料、木质纤维素生物质资源高值化利用等方面的研究工作。在国内外学术期刊上发表论文100余篇,被SCI/EI/CPCI收录近40篇。获授权国家发明专利20项,实用新型专利4项。获省部级科学技术一、二等奖5项、厅局级科学技术一、二等奖4项。lijinbao@sust.edu.cn   
作者简介:  黄少炎,2022年7月于陕西科技大学获得工学学士学位。现为陕西科技大学轻工科学与工程学院硕士研究生,在李金宝教授的指导下进行研究。目前主要研究领域为锂硫电池正极与隔膜复合材料的制备及锂离子电池硅负极复合材料的制备。
引用本文:    
黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
HUANG Shaoyan, XIU Huijuan, WANG Zhixiong, FAN Sha, WANG Simin, DENG Zili, LI Na, LI Jinbao. Research Progress in Application of Nano-Cellulose Based Composites in Lithium-Sulfur Batteries. Materials Reports, 2024, 38(12): 22120181-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120181  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22120181
1 Li G, Chen Z, Lu J. Chem, 2018, 4(1), 3.
2 Zhao M, Li B Q, Zhang X Q, et al. ACS Central Science, 2020, 6(7), 1095.
3 Hofmann A F, Fronczek D N, Bessler W G, et al. Journal of Power Sources, 2014, 259, 300.
4 Li S Q, Leng D, Li W Y, et al. Energy Storage Materials, 2020, 27, 279.
5 Zhang B W, Sun B, Fu P, et al. Membranes (Basel), 2022, 12(8), 790.
6 Wang Z, Lee Y H, Kim S W, et al. Advanced Materials, 2020, 33(28), 2000892.
7 Chen Y, Zhang L, Yang Y, et al. Advanced Materials, 2021, 33(11), 2005569.
8 Zhu Y C, Wu C J, Yu D M, et al. China Pulp & Paper, 2020, 39(9), 74(in Chinese).
朱亚崇, 吴朝军, 于冬梅, 等. 中国造纸, 2020, 39(9), 74.
9 Shen M, Gao K, Xiang F, et al. Journal of Power Sources, 2020, 450, 227640.
10 Hu Y, Chen W, Lei T Y, et al. Advanced Energy Materials, 2020, 10(17), 1.
11 Zhang Z J, Fang Z H, Xiang Y Y, et al. Carbohydrate Polymers, 2021, 255, 117469.
12 Xiao R, Yang S, Yu T, et al. Batteries & Supercaps, 2022, 5(4), 1.
13 Hundekar P, Jain R, Lakhnot A S, et al. Journal of Applied Physics, 2020, 128(1), 1.
14 He T J, Zeng G F, Feng C, et al. Journal of Power Sources, 2020, 448, 227469.
15 Li L B, Shan Y H. New Carbon Materials, 2021, 36(2), 336.
16 Li H, Ma S, Li J, et al. Energy Storage Materials, 2020, 26, 203.
17 Li Y J, Zhou Y, Muhammad Y, et al. ACS Materials Letters, 2021, 3(8), 1130.
18 Nechyporchuk O, Belgacem M N, Bras J. Industrial Crops & Products, 2016, 93, 2.
19 Habibi Y, Lucia L A, Rojas O J. Chemical Reviews, 2010, 110(6), 3479.
20 Avcioglu, Nermin H. World Journal of Microbiology and Biotechnology, 2022, 38(5), 1.
21 Choi S M, Rao K M, Zo S M, et al. Polymers (Basel), 2022, 14(6), 1080.
22 Nursaule B, Yerkezhan Y, Nurbol T, et al. ACS Applied Energy Mate-rials, 2023, 6, 588.
23 Li J X, Dai L Q, Wang Z F, et al. Journal of Energy Chemistry, 2022, 67(4), 736.
24 Li W, Wang S, Fan Z, et al. Materials Today Energy, 2021, 21, 100813.
25 Wu S L, Shi J Y, Nie X L, et al. Carbohydrate Polymers, 2022, 285, 119201.
26 Fan Y, Yang Z, Hua W, et al. Advanced Energy Materials, 2017, 7, 1602380.
27 Zhang Y J, Qu J, Ji Q Y, et al. Carbon, 2019, 155, 353.
28 Liu T, Sun X, Sun S, et al. Electrochimica Acta, 2019, 295, 684.
29 Gao N, Li B, Zhang Y J, et al. ACS Applied Materials & Interfaces, 2021, 13(48), 57193.
30 Huang J Q, Chong W G, Zhang B, et al. Materials Today Communications, 2021, 28, 102566.
31 Kim J H, Lee Y H, Cho S J, et al. Energy & Environmental Science, 2019, 12, 177.
32 Chien Y C, Pan R, Lee M T, et al. Journal of The Electrochemical Society, 2019, 166(14), A3235.
33 Muddasar M, Beaucamp A, Culebras M, et al. International Journal of Biological Macromolecules, 2022, 219, 788.
34 Deng C, Wang Z, Wang S, et al. Journal of Materials Chemistry A, 2019, 7(20), 12381.
35 Luo J, Guan K K, Lei W, et al. Journal of Materials Science & Technology, 2022, 122(27), 101.
36 Wang J, Zhang W H, Wei H J, et al. Sustainable Energy and Fuels, 2022, 6(12), 2901.
37 Li J H, Xiong Z S, Wu Y J, et al. Journal of Materials Chemistry A, 2022, 73(10), 513.
38 Park J W, Jo S C, Kim M J, et al. NPG Asia Materials, 2021, 13(1), 1.
39 Bai L L, Ma J S, Song H Q, et al. ACS Applied Materials and Interfaces, 2021, 13(49), 59174.
40 Liu Y E, Zhang M G, Gao Y N, et al. Journal of Alloys and Compounds, 2022, 898, 162821.
41 Fang L X, Chen J S, Wang P, et al. Diamond & Related Materials, 2022, 126, 109137.
42 Bharti V K, Pathak A D, Sharma C S, et al. Electrochimica Acta, 2022, 422, 140531.
43 Zhang M, Lu C X, Bi Z H, et al. ChemElectroChem, 2021, 8(5), 895.
44 Huang M Z, Hu T, Zhang Y T, et al. ACS Applied Materials and Interfaces, 2022, 14(15), 17959.
45 Chang C H, Chung S H, Manthiram A, et al. Advanced Sustainable Systems, 2017, 1, 1.
46 Zhu Q C, Ye C, Mao D Y. Nanomaterials, 2022, 12(20), 3612.
47 Zhang Y, Chen R, Wang S, et al. Energy Storage Materials, 2020, 25, 145.
48 Xu S, Kwok C, Zhou L, et al. Advanced Functional Materials, 2020, 31, 2004239.
49 Liang X, Wang L L, Wu X L, et al. Journal of Energy Chemistry, 2022, 73(10), 370.
50 Shan Y H, Li B L, Yang X Y, et al. ACS Applied Energy Materials, 2021, 4(5), 5101.
51 Liu J, Li Y Y, Xuan Y X, et al. ACS Applied Materials and Interfaces, 2020, 12(15), 17592.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[12] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[15] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed