Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22120133-9    https://doi.org/10.11896/cldb.22120133
  无机非金属及其复合材料 |
砂型3D打印材料在岩体物理模型试验中的应用研究及展望
余宸, 田威*, 王杰, 高晋峰
长安大学建筑工程学院,西安 710061
Application Research and Prospect of Sand-type 3D Printing Material in Rock Physical Model Test
YU Chen, TIAN Wei*, WANG Jie, GAO Jinfeng
School of Civil Engineering, Chang'an University, Xi'an 710061, China
下载:  全 文 ( PDF ) ( 32366KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无法获得内部结构高度一致的岩体试样以及预制缺陷制作困难一直是岩石室内物理试验中面临的关键问题。3D打印技术作为近年来快速发展的先进制造技术,可以作为有效方法实现对复杂结构的制备,目前已经有众多研究学者将其应用于岩石室内物理试验中。为了寻求最接近于天然岩石细微观结构特征以及脆性特征的3D打印类岩石模型,相关学者采用了砂型材料对类岩石模型进行打印以达到代替天然岩石进行试验的目的,相关研究成果证实砂型3D打印材料具有与天然岩石材料相似的脆性特征、表面粗糙度特征、细微观结构特征、裂纹扩展规律等,为砂型3D打印类岩石模型开展岩石室内物理试验奠定了基础。基于此,根据近年来国内外相关研究以及本课题组近六年的研究成果,对基于砂型3D打印材料的岩体模型在岩石室内试验中的研究成果进行了总结分析,指出了现有研究存在的问题和局限性,并对未来砂型3D打印材料应用于岩石室内物理试验中的前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余宸
田威
王杰
高晋峰
关键词:  岩石力学  岩体物理模型  3D打印  砂型材料  力学性能  裂纹扩展    
Abstract: The difficulty in obtaining rock samples with highly consistent internal structures and the challenges of fabricating prefabricated defects have long been critical issues in indoor rock physics experiments. As an advanced manufacturing technology that has rapidly developed in recent years, 3D printing offers an effective method for creating complex structures. Numerous researchers have applied this technology in indoor rock physics experiments. To develop 3D printed rock models that closely mimic the microstructural and brittle characteristics of natural rocks, scholars have employed sand-type materials for printing these models, aiming to substitute natural rocks in experiments. Studies have confirmed that sand-type 3D printing materials exhibit brittle characteristics, surface roughness, microstructural features, and crack propagation patterns similar to those of natural rock materials, thus laying the foundation for conducting indoor rock physics experiments with sand-type 3D printed rock models. Based on recent domestic and international research and our research group's findings over the past six years, we have summarized and analyzed the research achievements of sand-type 3D printed rock models in indoor rock experiments. We have identified existing problems and limitations in current research and provided insights into the future prospects of sand-type 3D printing materials in indoor rock physics experiments.
Key words:  rock mechanics    rock-physical model    3D printing    sand-type material    mechanical property    crack propagation
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TU45  
基金资助: 中央高校基本科研业务费专项资金——长安大学优秀博士学位论文培育资助项目(300102282717); 陕西高校青年创新团队(〔2022〕943)
通讯作者:  *田威,2009年西安理工大学本硕博毕业,现任长安大学建筑工程学院教授、博士研究生导师。目前主要从事岩土工程数值仿真、岩土材料细观力学分析方面的研究工作,代表作100余篇,其中SCI 32篇,EI 23篇,专著1部,授权国家发明专利8项。tianwei@chd.edu.cn   
作者简介:  余宸,2019年6月于安徽工业大学获得工学学士学位。现为长安大学建筑工程学院博士研究生,在田威教授的指导下主要从事3D打印类岩材料动态损伤方面的研究工作。
引用本文:    
余宸, 田威, 王杰, 高晋峰. 砂型3D打印材料在岩体物理模型试验中的应用研究及展望[J]. 材料导报, 2024, 38(12): 22120133-9.
YU Chen, TIAN Wei, WANG Jie, GAO Jinfeng. Application Research and Prospect of Sand-type 3D Printing Material in Rock Physical Model Test. Materials Reports, 2024, 38(12): 22120133-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120133  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22120133
1 Vogler D, Walsh S D, Dombrovski E, et al. Engineering Geology, 2017, 226, 221.
2 Qi F F, Zhang K, Xie J B. Rock and Soil Mechanics, 2021, 42(6), 1669 (in Chinese).
齐飞飞, 张科, 谢建斌. 岩土力学, 2021, 42(6), 1669.
3 Liu X H, Zhang K, Li N, et al. Rock and Soil Mechanics, 2021, 42(11), 3017 (in Chinese).
刘享华, 张科, 李娜, 等. 岩土力学, 2021, 42(11), 3017.
4 Kong L, Ostadhassan M, Hou X, et al. Journal of Petroleum Science and Engineering, 2019, 175, 1039.
5 Perras M A, Vogler D. Transport in Porous Media, 2019, 129(2), 559.
6 Tian W, Yu C, Wang X H, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3), 446 (in Chinese).
田威, 余宸, 王肖辉, 等. 岩石力学与工程学报, 2022, 41(3), 446.
7 Tian W, Pei Z R, Han N. Rock and Soil Mechanics, 2017, 38(8), 2297 (in Chinese).
田威, 裴志茹, 韩女. 岩土力学, 2017, 38(8), 2297.
8 Yu C, Tian W, Zhang C S, et al. International Journal of Rock Mecha-nics and Mining Sciences, 2021, 146, 104868.
9 Tian W, Han N. Strain, 2017, 53(6), e12240.
10 Tian W, Han N. Geotechnical Testing Journal, 2017, 40(3), 483.
11 Primkulov B, Chalaturnyk J, Chalaturnyk R, et al. 3D Printing and Additive Manufacturing, 2017, 4(3), 149.
12 Song R, Wang Y, Ishutov S, et al. Rock Mechanics and Rock Enginee-ring, 2020, 53(12), 5745.
13 Barbosa K, Chalaturnyk R, Bonfils B, et al. Geotechnical and Geological Engineering, 2020, 38(2), 1065.
14 Fereshtenejad S, Song J J. Journal of Structural Geology, 2021, 143, 104251.
15 Jiang Q, Song L B. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1), 23 (in Chinese).
江权, 宋磊博. 岩石力学与工程学报, 2018, 37(1), 23.
16 Wang B X, Jin A B, Zhao Y Q, et al. Rock and Soil Mechanics, 2019, 40(10), 3920 (in Chinese).
王本鑫, 金爱兵, 赵怡晴, 等. 岩土力学, 2019, 40(10), 3920.
17 Kong L, Ostadhassan M, Lin R, et al. Rapid Prototyping Journal, 2019, 25(7), 1295.
18 Almetwally A G, Jabbari H. International Journal of Heat and Mass Transfer, 2021, 180, 121798.
19 Wu Z, Zhang B, Weng L, et al. Rock Mechanics and Rock Engineering, 2020, 53, 467.
20 Gong L, Heitor A, Indraratna B. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4), 653.
21 Sharafisafa M, Shen L, Zheng Y, et al. International Journal of Rock Mechanics and Mining Sciences, 2019, 117, 105.
22 Sharafisafa M, Shen L, Xu Q. International Journal of Rock Mechanics and Mining Sciences, 2018, 112, 122.
23 Aliabadian Z, Sharafisafa M, Tahmasebinia F, et al. Engineering Fracture Mechanics, 2021, 241, 107396.
24 Zhou T, Zhu J B, Xie H P. Rock Mechanics and Rock Engineering, 2020, 53, 2855.
25 Zhou T, Zhu J B, Ju Y, et al. Engineering Fracture Mechanics, 2019, 205, 190.
26 Su H J, Guo Q Z, Jing H W, et al. Journal of Mining & Safety Engineering, 2021, 38(4), 840 (in Chinese).
苏海健, 郭庆振, 靖洪文, 等. 采矿与安全工程学报, 2021, 38(4), 840.
27 Ma G W, Dong Q Q, Wang L. Science China Technological Sciences, 2018, 61, 1872.
28 Zhu J B, Zhou T, Liao Z Y, et al. International Journal of Rock Mecha-nics and Mining Sciences, 2018, 106, 198.
29 Ju Y, Xie H P, Zheng Z M, et al. Chinese Science Bulletin, 2014, 59(32), 3109 (in Chinese).
鞠杨, 谢和平, 郑泽民, 等. 科学通报, 2014, 59(32), 3109.
30 Li B, Wang J F, Liu R C, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5), 1020.
31 Xiao W M, Huang W, Ding M, et al. Chinese Journal of Geotechnical Engineering, 2018, 40(S2), 256 (in Chinese).
肖维民, 黄巍, 丁蜜, 等. 岩土工程学报, 2018, 40(S2), 256.
32 Xiao W M, Huang W, Han J C, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(S2), 106 (in Chinese).
肖维民, 黄巍, 韩俊成, 等. 岩土工程学报, 2020, 42(S2), 106.
33 Dande S, Stewart R R, Dyaur N. Petrophysics, 2021, 62(5), 537.
34 Huang L, Stewart R R, Dyaur N, et al. Geophysics, 2016, 81(6), D669.
35 Wang B X, Jin A B, Sun H, et al. Rock and Soil Mechanics, 2021, 42(2), 439 (in Chinese).
王本鑫, 金爱兵, 孙浩, 等. 岩土力学, 2021, 42(2), 439.
36 Jin A B, Wang S L, Wang B X, et al. Rock and Soil Mechanics, 2020, 41(12), 3862 (in Chinese).
金爱兵, 王树亮, 王本鑫, 等. 岩土力学, 2020, 41(12), 3862.
37 Wang P T, Huang Z J, Ren F H, et al. Rock and Soil Mechanics, 2020, 41(1), 46 (in Chinese).
王培涛, 黄正均, 任奋华, 等. 岩土力学, 2020, 41(1), 46.
38 Jiang Q, Feng X T, Song L B, et al. Acta Mechanica Sinica, 2016, 32(1), 101.
39 Xiong Z Q, Jiang Q, Gong Y H, et al. Rock and Soil Mechanics, 2015, 36(6), 1557 (in Chinese).
熊祖强, 江权, 龚彦华, 等. 岩土力学, 2015, 36(6), 1557.
40 Zhang Y X, Xu M. Rock mechanics, China Architecture & Building Press, China, 2015, pp.63 (in Chinese).
张永兴, 许明. 岩石力学, 中国建筑工业出版社, 2015, pp.63.
41 Vrkljan I. Rock engineering in difficult ground conditions-soft rocks and karst, CRC Press, 2010, pp.399.
42 Yu X, Vayssade B. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28, 333.
43 Tse R, Cruden D. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16, 303.
44 Myers N. Wear, 1962, 5(3), 182.
45 Gaefke C, Botelho E, Ferreira N, et al. Journal of Applied Polymer Science, 2007, 106(4), 2274.
46 Li S Y, He T M, Yin X C. Introduction of rock fracture mechanics, University of Science and Technology of China Press, China, 2010, pp.176 (in Chinese).
李世愚, 和泰名, 尹祥础. 岩石断裂力学导论, 中国科学技术大学出版社, 2010, pp.176.
[1] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[7] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[8] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[11] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[14] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed