Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22110271-6    https://doi.org/10.11896/cldb.22110271
  无机非金属及其复合材料 |
还原氧化石墨烯的可控制备及表征
朱玉方1, 张慧丽1, 梁丰国2, 杨新伟2, 陈长科3, 买买提江·依米提1, 马俊红1,*
1 新疆大学化工学院,乌鲁木齐 830046
2 新疆众和股份有限公司新疆铝基电子电工材料重点实验室,乌鲁木齐 830013
3 新疆众和股份有限公司,乌鲁木齐 830013
Controllable Preparation and Structural Characterizations of Reduced Graphene Oxide
ZHU Yufang1, ZHANG Huili1, LIANG Fengguo2, YANG Xinwei2, CHEN Changke3, YIMIT Mamatjan1, MA Junhong1,*
1 School of Chemical Engineering, Xinjiang University, Urumqi 830046, China
2 Xinjiang Key Laboratory of Aluminum-based Electronic and Electrical Materials of Xinjiang Joinword Company Limited, Urumqi 830013, China
3 Xinjiang Joinword Company Limited, Urumqi 830013, China
下载:  全 文 ( PDF ) ( 9569KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化学氧化还原法是工业上较为成熟的一种制备还原氧化石墨烯(Reduced graphene oxide,RGO)的方法。本研究首先采用改进Hummers法氧化剥离石墨,在喷雾干燥条件下获得了片状氧化石墨烯(Graphene oxide,GO),然后分别采用维生素C(Vitamin C,VC)化学还原、快速升温热还原、慢速升温热还原、VC还原结合快速升温热还原法对GO样品进行还原,得到了四种RGO样品,并对其进行了全面的物理化学表征。结果表明,还原方法对RGO形貌结构及导电性有显著影响:采用VC化学还原可得到比表面积较大且具有微/介多级孔道的球状RGO,其还原程度低,导电性差;采用热还原可得到还原程度较高、导电性良好的片状RGO,并且较快的升温速率有利于发生膨胀剥离,可有效提高相应RGO样品的比表面积;VC还原与快速升温热还原相结合则可以得到比表面积和还原程度都较高的多孔球状RGO,但由于RGO颗粒之间较大的接触电阻,其导电性不及热还原得到的片状RGO。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱玉方
张慧丽
梁丰国
杨新伟
陈长科
买买提江·依米提
马俊红
关键词:  还原氧化石墨烯  还原方法  化学还原  热还原  维生素C    
Abstract: Chemical oxidation-reduction is a relatively mature method for preparing reduced graphene oxide (RGO) in industry. In this study, graphite was first oxidized using the modified Hummers method, and then the graphene oxide (GO) with lamellar structure could be obtained by spray drying. After that, four types of RGO samples were prepared, respectively, by using vitamin C (VC) chemical reduction, rapid-heating reduction, slow-heating reduction, and combined VC reduction with rapid-heating reduction methods, and the comprehensive physicochemical cha-racterization was carried out. The results show that the reduction method has a significant effect on the morphology, structure, and conductivity of the obtained RGO. By using VC chemical reduction, spherical RGO with large specific surface area and micro-meso hierarchical pore structure could be produced, and it exhibits low reduction degree and conductivity. The layered RGO samples with high reduction degree and good conductivity can be fabricated by thermal reduction, especially the rapid heating would be conducive to the expansion and peeling of RGO and thus effectively improve its specific surface area. When VC reduction and rapid-heating reduction are used in combination, the generated porous spherical RGO possesses high specific surface area and reduction degree, nevertheless, duing to the large contact resistance between RGO particles, its conductivity is inferior to corresponding RGO sheets produced by thermal reduction.
Key words:  reduced graphene oxide    reduction methods    chemical reduction    thermal reduction    vitamin C
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  O613  
基金资助: 企业委托课题
通讯作者:  *马俊红,新疆大学化工学院教授、博士研究生导师。2010年大连理工大学/清华大学联合培养工学博士毕业。主要从事功能碳材料的设计开发及工业化应用研究工作。在Fuel、J.Catal、Carbon等知名期刊发表论文30余篇。majhxju@163.com   
作者简介:  朱玉方,2020年6月于新疆大学获得工学学士学位。现为新疆大学化工学院硕士研究生,在马俊红教授的指导下进行研究。目前主要从事石墨烯的制备及相关应用研究。
引用本文:    
朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
ZHU Yufang, ZHANG Huili, LIANG Fengguo, YANG Xinwei, CHEN Changke, YIMIT Mamatjan, MA Junhong. Controllable Preparation and Structural Characterizations of Reduced Graphene Oxide. Materials Reports, 2024, 38(12): 22110271-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110271  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22110271
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
2 Zhang J A, Tian J L, Zhang Q W, et al. Journal of Chongqing University of Technology(Natural Science), 2022, 36(4), 111(in Chinese).
张俊安, 田江玲, 张庆伟, 等. 重庆理工大学学报(自然科学), 2022, 36(4), 111.
3 Gadipelli S, Guo Z X. Progress in Materials Science, 2015, 69, 1.
4 Chen J. Synthesis and structural control of graphene oxide. Ph. D. Thesis, Tsinghua University, China, 2016 (in Chinese).
陈骥. 氧化石墨烯的制备及结构控制. 博士学位论文, 清华大学, 2016.
5 Kumar N, Salehiyan R, Chauke V, et al. FlatChem, 2021, 27, 100224.
6 Ismail Z. Ceramics International, 2019, 45, 23857.
7 De Silva K K H, Huang H H, Joshi R K, et al. Carbon, 2017, 119, 190.
8 Oliveira A E F, Braga G B, Tarley C R T, et al. Journal of Materials Science, 2018, 53(17), 12005.
9 Jakhar R, Yap J E, Joshi R. Carbon, 2020, 170, 277.
10 Zhou A A, Bai J, Hong W J, et al. Carbon, 2022, 191, 301.
11 Xue B, Zou Y Q, Yang Y C. Journal of Materials Science, 2017, 52(9), 4866.
12 Chen J, Yao B W, Li C, et al. Carbon, 2013, 64, 225.
13 Chen C M, Yang Q H, Yang Y G, et al. Advanced Materials, 2009, 21(35), 3007.
14 Huang H Y, Park H, Huang J X. Chem, 2022, 8(9), 2432.
15 Parviz D, Metzler S D, Das S, et al. Small, 2015, 11(22), 2661.
16 Krishnan D, Kim F, Luo J Y, et al. Nano Today, 2012, 7(2), 137.
17 Qiu Y, Guo F, Hurt R, et al. Carbon, 2014, 72, 215.
18 Krishnamoorthy K, Veerapandian M, Yun K, et al. Carbon, 2013, 53, 38.
19 Zhang S L, Si D Y, Song Y H. Chinese Journal of Power Sources, 2018, 42(3), 373 (in Chinese).
张胜利, 司丹亚, 宋延华. 电源技术, 2018, 42(3), 373.
20 De Silva K K H, Huang H H, Yoshimura M. Applied Surface Science, 2018, 447, 338.
21 Lavin-Lopez M P, Paton-Carrero A, Sanchez-Silva L, et al. Advanced Powder Technology, 2017, 28(12), 3195.
22 Kumar P V, Bardhan N M, Chen G Y, et al. Carbon, 2016, 100, 90.
23 Klemeyer L, Park H, Huang J X. ACS Materials Letters, 2021, 3(5), 511.
24 Szabó T, Berkesi O, Dékány I. Carbon, 2005, 43(15), 3186.
25 Stankovich S, Piner R D, Nguyen S T, et al. Carbon, 2006, 44(15), 3342.
26 Zhu M H, Hu P. Instrumental analysis, Higher Education Press, China, 2008, pp. 307 (in Chinese).
朱明华, 胡坪. 仪器分析, 高等教育出版社, 2008, pp. 307.
27 Li Z Y, Zhang W H, Luo Y, et al. Journal of the American Chemical Society, 2009, 131(18), 6320.
28 Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007, 45(7), 1558.
29 Farah S, Farkas A, Madarász J, et al. Journal of Thermal Analysis and Calorimetry, 2020, 142(1), 331.
30 Wan J, Liu T X, Chen P. Electrical Engineering Materials, 2020(3), 17 (in Chinese).
万剑, 刘同心, 陈鹏. 电工材料, 2020(3), 17.
31 Shayesteh Z A, Mende A A, Pawar S P, et al. Polymer Engineering & Science, 2021, 61(4), 959.
32 Wu L, Peng B, Zhou J, et al. Materials Reports, 2020, 34(23), 23009 (in Chinese).
吴雷, 彭犇, 周军, 等. 材料导报, 2020, 34(23), 23009.
33 Poovan F, Chandrashekhar V G, Natte K, et al. Catalysis Science & Technology, 2022, 12(22), 6623.
34 Mu J, Gao F, Cui G, et al. Progress in Organic Coatings, 2021, 157, 106321.
[1] 吕晓书, 王霞玲, 蒋光明, 熊昆, 汪小莉, 张贤明. 纳米零价铁基材料去除水中硝酸盐污染的研究进展[J]. 材料导报, 2023, 37(4): 21010052-10.
[2] 杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
[3] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[4] 吴佳洪, 王文广, 倪丁瑞, 肖伯律, 李荣德, 林楠, 武秋生, 夏津. TiB2纳米涂层改性碳纤维增强Mg基复合材料的微观结构及力学性能[J]. 材料导报, 2023, 37(14): 22030117-6.
[5] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[6] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[7] 吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
[8] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[9] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[10] 付文英, 司司, 魏永生, 刘妍, 陈佳琪, 韦露, 赵新生. 硼氢化钠循环再生工艺的研究进展[J]. 材料导报, 2021, 35(15): 15017-15025.
[11] 张秀玲, 赵静, 徐卫卫, 李艳琴. 氢等离子体辅助制备Ru/UiO-66催化材料及其应用[J]. 材料导报, 2020, 34(Z2): 84-87.
[12] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[13] 肖帅, 王振飞, 张萍, 何岗, 洪建和. 还原氧化石墨烯/碳纸空气电极的电化学制备及性能[J]. 材料导报, 2020, 34(20): 20005-20009.
[14] 欧先国, 周玉山, 毛文峰, 顾晓瑜, 长世勇, 裴锋. 多孔碳添加量对溶胶凝胶-碳热还原法制备磷酸钒锂正极材料的电化学影响[J]. 材料导报, 2019, 33(Z2): 38-42.
[15] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed