Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22100190-11    https://doi.org/10.11896/cldb.22100190
  高分子与聚合物基复合材料 |
蚕丝基柔性可穿戴传感器在人体健康监测中的研究进展
杜姗1,2, 魏云航1, 谭宇浩1, 周金利1, 杨红英1,2, 周伟涛3,4,*
1 中原工学院纺织学院,郑州 451191
2 中原工学院纺织服装产业河南省协同创新中心,郑州 450007
3 中原工学院纺织服装产业研究院,郑州 451191
4 郑州市智能织物与柔性电子技术重点实验室,郑州 451191
Recent Progress on Silk-based Flexible and Wearable Sensors for Human Health Monitoring
DU Shan1,2, WEI Yunhang1, TAN Yuhao1, ZHOU Jinli1, YANG Hongying1,2, ZHOU Weitao3,4,*
1 School of Textiles, Zhongyuan University of Technology, Zhengzhou 451191, China
2 Collaborative Innovation Center of Henan Province for Textile & Garment Industry, Zhongyuan University of Technology, Zhengzhou 450007, China
3 Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 451191, China
4 Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhengzhou 451191, China
下载:  全 文 ( PDF ) ( 55363KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传感器是智能可穿戴器件的关键组成部分之一,通过信号转换机制能够全天候、实时连续采集人体生命体征和生理信息,被广泛应用于实时健康监测、医疗诊断及科学化运动训练领域。蚕丝材料具有易再生成型、富含功能化基团、结构可控及生物相容等特点,被广泛研究并应用在柔性可穿戴传感器中。本文结合蚕丝的组成、结构与性能特点,聚焦蚕丝基可穿戴传感器的构筑及在健康监测领域的应用,围绕其构筑方法及应用领域,系统地阐述了蚕丝基柔性可穿戴传感器的研究进展,并对蚕丝基可穿戴传感器面临的挑战和未来的发展趋势进行了探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜姗
魏云航
谭宇浩
周金利
杨红英
周伟涛
关键词:  蚕丝基先进材料  丝素蛋白  柔性可穿戴传感器  健康监测  生理信息    
Abstract: Sensors, one of the key components of smart wearable devices, can continuously acquire human vital signs and physiological information in real time through signal conversion mechanism, which have been widely used in real-time health monitoring, medical diagnosis and scientific sports training. Silk is a prospective material for smart wearable sensors due to its characteristics of ease of processing, presence of functional groups, tunable conformation transition and excellent biocompatibility, which has been extensively studied for use in flexible wearable sensors. In this paper, by incorporating the composition, structure and properties of silk, we mainly focus on the construction of silk-based wearable sensor and its application in the field of health monitoring. This review encompasses a detailed discussion on silk-based sensors, the construction method and their applications. Finally, the challenges and future prospects of silk-based wearable sensors are discussed.
Key words:  advanced silk-based materials    silk fibroin    flexible wearable sensor    health monitoring    physiological information
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TP212.9  
基金资助: 河南省青年骨干教师计划(2021GGJS108);河南省自然科学基金(242300421470);河南省重点研发与推广专项(232102230155);中原工学院“学科青年硕导培育计划”项目(SD202219;SD202216)
通讯作者:  *周伟涛,中原工学院纺织服装产业研究院副教授、硕士研究生导师。2005年和2007年分别于中原工学院纺织学院获得纺织工程专业学士学位和硕士学位,2011年江南大学纺织工程专业博士毕业。2012年到中原工学院工作至今。目前主要从事高分子材料再生、功能化改性应用及智能可穿戴纺织品等方面的研究工作。发表SCI和EI收录论文23篇,包括ACS Applied Polymer Materials、Colloids Surfaces A-Physicochemical and Engineering Aspects、Applied Surface Science、Textile Research Journal等期刊。weitao.zhou@zut.edu.cn   
作者简介:  杜姗,中原工学院硕士生研究生导师,2017年毕业于澳大利亚迪肯大学,主要从事蚕丝纤维材料功能性改性、智能可穿戴传感器、材料表界面性能等方面的研究。近年来,在材料的功能性改性等领域发表论文10多篇,包括ACS Appl.Mater.Inter.、Colloids Surfaces A、J.Colloid.Interf.Sci.、Mater.Design等期刊。
引用本文:    
杜姗, 魏云航, 谭宇浩, 周金利, 杨红英, 周伟涛. 蚕丝基柔性可穿戴传感器在人体健康监测中的研究进展[J]. 材料导报, 2024, 38(12): 22100190-11.
DU Shan, WEI Yunhang, TAN Yuhao, ZHOU Jinli, YANG Hongying, ZHOU Weitao. Recent Progress on Silk-based Flexible and Wearable Sensors for Human Health Monitoring. Materials Reports, 2024, 38(12): 22100190-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100190  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22100190
1 Niu W X. Journal of Medical Biomechanics, 2021, 36(5), 676 (in Chinese).
牛文鑫. 医用生物力学, 2021, 36(5), 676.
2 Li X C, Yu M S. China Sport Science, 2020, 40(2), 83 (in Chinese).
李祥臣, 俞梦孙. 体育科学, 2020, 40(2), 83.
3 Kher R K, Patel D M. The Open Biomedical Engineering Journal, 2021, 15(210), 213.
4 Quang T T, Linh D T M, Subramaniyan R, et al. ACS Applied Materials & Interfaces, 2019, 11(2), 2317.
5 Saha R, Suparna B, Satyajit S, et al. SN Computer Science, 2021, 2(1), 33.
6 Cheng E M, Lim E A, Tan W H, et al. Journal of Physics:Conference Series, 2020, 1529(2), 022082.
7 Hatimah H, Gunawan A N, Paramarta I B A, et al. Buletin Fisika, 2018, 19(2), 80.
8 Tian J, Jiang S, Fu L, et al. Chinese Journal of Medical Instrumentation, 2022, 46(2), 211 (in Chinese).
田佳, 蒋硕, 付丽, 等. 中国医疗器械杂志, 2022, 46(2), 211.
9 Bijender, Kumar A. Sensing and Bio-Sensing Research, 2021, 33, 100434.
10 Yao Y, Chen J Y, Guo Y H, et al. Biosensors & Bioelectronics, 2021, 179, 113078.
11 Zhu BY, Li X R, Zhou L, et al. Electroanalysis, 2021, 34(2), 237.
12 Jaya P N, Parshuram M P, Mercy G S, et al. ACS Biomaterials Science & Engineering, 2021, 7(6), 2015.
13 Kittiya S, Thana T, Albert S, et al. Chemical Communications (Cambridge, England), 2020, 56(52), 7132.
14 Tracey C, Torlopov M, Martakov I, et al. Carbohydrate Polymers, 2020, 247, 116704.
15 Kumar S, Gupta T, Varadarajan K M, et al. Composites Part B:Engineering, 2019, 177, 107285.
16 Jieun L, Meehyun L, Jinsu Y, et al. ACS Applied Materials & Interfaces, 2017, 9(31), 26279.
17 Ling S J, L. Kaplan D, J. Buehler M, et al. Nature Reviews Materials, 2018, 3(4), 53.
18 Gils J, Shalumon K T, Jyh-Ping C, et al. Current Medicinal Chemistry, 2020, 27(16), 2734.
19 Wang Q, Ling S J, Yao Q Z, et al. ACS Materials Letters, 2020, 2(2), 153.
20 Cui C, Fu Q J, Meng L, et al. ACS Applied Bio Materials, 2020, 4(1), 85.
21 Bandyopadhyay A, Chowdhury S K, Dey S, et al. Journal of the Indian Institute of Science, 2019, 99(3), 445.
22 Du S, Zhang J, Zhou W T, et al. Journal of Colloid and Interface Science, 2016, 478, 316.
23 Du S, Pu C C, He J X, et al. Journal of Donghua University(Natural Science), 2009, 35(6), 674 (in Chinese).
杜姗, 蒲丛丛, 何建新, 等. 东华大学学报(自然科学版), 2009, 35(6), 674.
24 Bowen Z, Hong W, Ru L W, et al. Advanced Materials, 2016, 28(22), 4250.
25 Wang C Y, Xia K L, Wang H M, et al. Advanced Materials, 2018, 31(9), 1801072.
26 Wen D L, Sun D H, Huang P, et al. Microsystems & Nanoengineering, 2021, 7(1), 35.
27 Gong M, Zhang L Q, Wan P B, et al. Progress in Polymer Science, 2020, 107, 101279.
28 Wang C Y, Li X, Gao E, et al. Advanced Materials, 2016, 28(31), 6640.
29 Lu W D, Yu P, Jian M Q, et al. ACS Applied Materials & Interfaces, 2020, 12(10), 11825.
30 Lu W D, Jian M Q, Wang Q, et al. Nanoscale, 2020, 44, 17954.
31 Wang H M, Li S, Wang Y L, et al. Advanced Materials, 2020, 32(11), 1908214.
32 Ye C, Ren J, Wang Y L, et al. Matter, 2019, 1(5), 1411.
33 Zhang M C, Wang C Y, Wang Q, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 20894.
34 Yan B B, Zhou M, Liao X T, et al. ACS Applied Materials & Interfaces, 2021, 36, 43414.
35 Ryan J D, Alemu M D, Roger G, et al. ACS Applied Materials & Interfaces, 2017, 9(10), 9045.
36 Wu R, Ma L, Hou C, et al. Small, 2019, 15(31), 1901558.
37 Wu R H, Ma L Y, Aniruddha P, et al. ACS Applied Materials & Interfaces, 2019, 11(36), 33336.
38 Ming J F, Chao C C, Huang X W, et al. Acta Materiae Compositae Sinica, 2021, 38(2), 380 (in Chinese).
明津法, 赵层层, 黄晓卫, 等. 复合材料学报, 2021, 38(2), 380.
39 Qiu W, Liu X Y, et al. Advanced Fiber Materials, 2022, 4, 390.
40 Kashkooli F M, Soltani M, Souri M, et al. Journal of Controlled Release, 2020, 327, 316.
41 Du S, Zhou W T, Zhang Y M, et al. Journal of Materials Science and Engineering, 2019, 37(5), 736 (in Chinese).
杜姗, 周伟涛, 张一敏, 等. 材料科学与工程学报, 2019, 37(5), 736.
42 Heah W Y, Amagishi H, Fujita K, et al. Materials Chemistry Frontiers, 2022, 4, 1065.
43 Zhang Y F, Chen C F, Ye Q, et al. Advanced Functional Materials, 2021, 31, 2100150.
44 Dong X Y, Liu Q, Liu S, et al. Advanced Fiber Materials, 2022, 4(4), 885.
45 Li D, Fan Y F, Han G C, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 10039.
46 Hou C, Zhang F, Chen C F, et al. Chemical Papers, 2021, 75, 4927.
47 Huang J N, Xu Z J, Qiu W, et al. Advanced Functional Materials, 2020, 30(13), 1910547.
48 Wang Q, Ling S J, Liang X P, et al. Advanced Functional Materials, 2019, 29(16), 1808695.
49 Chen G, Matsuhisa N, Liu Z, et al. Advanced Materials, 2018, 30(21), 1800129.
50 Guo C, Li C, Vu H V, et al. Nature Materials, 2020, 19(1), 102.
51 Yang D, Jia T T, Lei L, et al. Polymer Bulletin, 2022(9), 1 (in Chinese).
杨冬, 贾彤彤, 雷蕾, 等. 高分子通报, 2022 (9), 1.
52 Yue Q, Wang S D, Xu F, et al. Materials Reports, 2021, 35(S1), 594 (in Chinese).
岳青, 王绍德, 徐飞, 等. 材料导报, 2021, 35(S1), 594.
53 Wu R H, Ma L Y, Liu X Y, et al. Advanced Science, 2021, 9(4), 2103981.
54 Qiu W, Liu X Y. Advanced Fiber Materials, 2022, 4, 390.
55 Chen W, Miao H, Meng G, et al. Small, 2022, 18(11), 2107196.
56 Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S, et al. Reactive and Functional Polymers, 2022, 172, 105202.
57 Narendar G, Sunghwan K. Advanced Energy Materials, 2021, 11(29), 2100801.
58 Wang Q, Jian M, Wang C, et al. Advanced Functional Materials, 2017, 27(9), 1605657.
59 Wang C, Xia K, Zhang M, et al. ACS Applied Materials & Interfaces, 2017, 45, 39484.
60 Liu M W, Zhang Y J, Liu K Y, et al. Advanced Materials, 2020, 33(1), 2004733.
61 Sun Q Y, Fu J Z, Zhang H, et al. Journal of Physics:Conference Series, 2021, 2011(1), 012058.
62 Chen Q Y, Tang H, Liu J L, et al. Chemical Engineering Journal, 2021, 422, 130091.
63 He F L, You X Y, Gong H, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 6442.
64 Yuan J J, Yan B B, Zhou M, et al. European Polymer Journal, 2021, 153, 110513.
65 Mohsen B A, Rene W, Michael W, et al. ACS Applied Materials & Interfaces, 2021, 13, 29, 34996.
66 Bao S X, Gao J T, Xu T F, et al. Chemical Engineering Journal, 2021, 411, 128470.
67 Ma L Y, Liu Q, Wu R H, et al. Small, 2020, 16(26), 2000203.
68 Liu X T, Zhang W L, Lin Z F, et al. Small Methods, 2021, 5(3), 2000926.
69 Nag A, Mukhopadhyay S C, Kosel J. IEEE Sensors Journal, 2017, 17(13), 1.
70 Chen L Y, Tee B C K, Chortos A L, et al. Nature Communications, 2014, 5(1), 5028.
71 He Y X, Zhou M Y, Mahmoud M, et al. Advanced Composites and Hybrid Materials, 2022, 5(3), 1939.
72 Wang C Y, Xia K L, Jian M Q, et al. Journal of Materials Chemistry C, 2017, 5(30), 7604.
73 Chao M Y, He L Z, Gong M, et al. ACS Nano, 2021, 15, 9746.
74 Seo J W, Kim H, Kim K, et al. Advanced Functional Materials, 2018, 28(36), 1800802.
75 Minsik J, Kyungtaek M, Biswajit R, et al. ACS Nano, 2018, 12(6), 5637.
76 Hou C, Xu Z J, Qiu W, et al. Small, 2019, 15(11), 1805084.
77 Jia H M, Chang G, Lei M, et al. Applied Surface Science, 2016, 384, 58.
78 George J M, Antony A, Mathew B, et al. Mikrochimica Acta, 2018, 185(7), 358.
79 Norizan M N, Moklis M H, Demon S Z N, et al. RSC Advances, 2020, 10(71), 43704.
80 Madurani K, Suprapto S, Machrita N, et al. ECS Journal of Solid State Science and Technology, 2020, 9, 93013.
81 Kuang D J, Yu W D, Liu J Y, et al. College of Textile Science and Engineering, 2022, 24, 4175190.
82 Wei L, Li J H, Chen C, et al. Journal of the Electrochemical Society, 2020, 167 (12), 127501.
83 Zhao L, Wen Z Z, Jiang F J, et al. RSC Advances, 2020, 10(11), 6163.
84 You X, Pak J J. Sensors & Actuators B:Chemical, 2014, 202, 1357.
85 Yang Z, Huang T, Cao P, et al. ACS Applied Materials & Interfaces, 2022, 14 (16), 18110.
86 Liu J, Wang H, Rongxian O, et al. Chemical Engineering Journal, 2021, 426, 130722.
87 Wang D Y, Wang L L, Lou Z, et al. Nano Energy, 2020, 78, 105252.
88 Hou C, Xu Z J, Qiu W, et al. Small (Weinheim an der Bergstrasse, Germany), 2019, 15(11), 1805084.
89 Wang Z L, Yu H Y, Zhao Z, et al. Microchemical Journal, 2021, 169, 106585.
[1] 张永芳, 黎亮, 董丽虹, 王海斗, 王朋, 谢向宇. RFID传感标签制备工艺研究进展[J]. 材料导报, 2023, 37(22): 22030149-10.
[2] 李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
[3] 张钰禄, 胡谦, 叶倩, 吴佳喜, 李秋实, 苏柑锚, 杜官本, 徐开蒙. 甲壳素/丝素蛋白复合薄膜结晶特性变化研究[J]. 材料导报, 2022, 36(11): 20100142-6.
[4] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[5] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[6] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[7] 朱洪艳, 吴宝昌, 林长亮, 王金亮, 王刚. 直升机复合材料结构基于振动健康监测的研究进展[J]. 材料导报, 2020, 34(Z1): 581-584.
[8] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[9] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[10] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[11] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[12] 薛子凡, 邢志国, 王海斗, 李国禄, 刘喆. 面向结构健康监测的压电传感器综述*[J]. 《材料导报》期刊社, 2017, 31(17): 122-132.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed