Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23020015-9    https://doi.org/10.11896/cldb.23020015
  无机非金属及其复合材料 |
基于3D打印技术的甲烷水蒸气重整研究
李聪1,†, 余冉1,2,†, 刘太楷2,3,*, 邓春明2, 邓畅光2, 刘敏2
1 长沙理工大学能源与动力工程学院,长沙 410114
2 广东省科学院新材料研究所,现代材料表面工程技术国家工程实验室,广州 510650
3 佛山桃园先进制造研究院,广东 佛山 528225
Study of Methane Steam Reforming Based on 3D-Printing Technology
LI Cong1,†, YU Ran1,2,†, LIU Taikai2,3,*, DENG Chunming2, DENG Changguang2, LIU Min2
1 College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 National Engineering Laboratory of Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Science, Guangzhou 510650, China
3 Foshan Taoyuan Institute of Advanced Manufacturing, Foshan 528225, Guangdong, China
下载:  全 文 ( PDF ) ( 43273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 天然气(主要成分为甲烷)重整是天然气高效清洁利用的重要途径,重整获得富含氢气的重整气,可供固体氧化物燃料电池进行高效发电。甲烷水蒸气重整需要反应器以及负载其上的重整催化剂,基于3D打印技术的多孔结构具有良好的耐高温、抗氧化和结构稳定性等特点,负载Ni基催化剂用于甲烷催化重整可有效提升反应器稳定性,但相关研究较少。采用浸渍法将Ni-CeO2/γ-Al2O3催化剂负载于3D打印制备的多孔结构和金属泡沫反应器,通过催化剂形貌、分布规律、相结构以及热稳定性的表征,研究了重整反应温度、浆料配比、反应器结构等因素对甲烷水蒸气重整效果的影响。结果显示,催化剂的最佳配比是PVA含量为3.5%(若无特殊说明,均为质量分数),Ni含量为19%,CeO2和γ-Al2O3的含量分别为16%和2.5%。重整测试结果表明,负载催化剂前,重整反应温度低于700 ℃时,Inconel625和泡沫Ni多孔反应器重整得到的氢气浓度均低于13%(体积分数),而重整反应温度高于800 ℃时,Inconel625和泡沫Fe多孔反应器重整效果接近,但Inconel625稳定性优于泡沫Fe;负载催化剂后,NCA-I(Inconel625)样品始终表现出低于NCA-N(泡沫Ni)和NCA-F(泡沫Fe)的重整性能,这主要是因为NCA-I含有较多的Cr元素,高温下Cr氧化生成Cr2O3氧化膜,阻碍了反应气和Ni的接触,但测试后NCA-I样品表现出优异的稳定性,无明显脆化和断裂现象,可有效提升重整反应器的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李聪
余冉
刘太楷
邓春明
邓畅光
刘敏
关键词:  甲烷水蒸气重整  反应器  催化剂  Ni-CeO2/γ-Al2O3  3D打印    
Abstract: Natural gas(the main composition of natural gas is methane) reforming is one of the most efficient and cleanest utilization of natural gas. The obtained reformed gas, mainly consisting of H2, can be supplied as fuels to solid oxide fuel cells for efficiently power generating. Reactor loaded with catalysts is necessary for methane steam reforming. The 3D-printed porous structure exhibits outstanding stability at elevated tempe-rature and excellent resistance to the highly oxidizing condition, which can obviously improve the stability of the methane reforming reactor. In this work, Ni-CeO2/γ-Al2O3 catalysts were loaded onto the 3D-printed porous structure and metallic foams via impregnation. The catalyst morphology, element distribution, phase structure and thermal stability were obtained through characterization methods such as SEM, XRD and TG. Accordingly, the effects of temperature, slurry ratio and the reactor structure on methane steam reforming were studied. Resultantly, an optimized catalyst recipe was obtained as 3.5wt% PVA, 19wt% Ni, 16wt% CeO2 and 2.5wt% γ-Al2O3. The reforming tests showed that without catalysts, the hydrogen concentration of 3D-printed Inconel625 porous reactor and Ni foam was as low as 13vol% at a temperature below 700 ℃;while above 800 ℃, the 3D-printed Inconel625 porous reactor and Fe foam presented similar reforming performance, but the 3D-printed reactor showed a better repeatability. Moreover, with catalyst loading, the NCA-I (3D-printed Inconel625 porous reactor) samples always showed a lowered reforming performance than NCA-N (Ni foam) and NCA-F (Fe foam), which is mainly due to the existence of Cr that brings Cr2O3 film to the exposed surface during the reforming process and thus hinders the contact between the reaction gas and the active surface. However, the NCA-I samples showed excellent stability that no obvious embrittlement and fracture were observed after reforming test, which shows the potential to effectively improve the stability of reforming reactors.
Key words:  steam reforming of methane    reator    catalyst    Ni-CeO2/γ-Al2O3    3D printing
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TK91  
基金资助: 国家重点研发计划(2022YFB4003603);广东省科学院建设国内一流科研机构行动专项资金(2019GDASYL-0102007);广东省科学院国际科技合作平台建设(2022GDASZH-2022010203-003)
通讯作者:  *刘太楷,工学博士,高级工程师,硕士研究生导师,广东省科学院“百人计划”C类。2014年3月博士毕业于法国贝尔福-蒙贝利亚技术大学材料系。主要从事固体氧化物燃料电池等离子喷涂工艺制备研究、碱式电解水等离子喷涂制备工艺研究与测试工作、神经网络在线等离子喷涂工艺优化等工作。先后主持和参与了广东省科技计划项目、广东省国际合作项目、国家重点研发计划项目等多个重大专项。在国内外期刊上累计发表学术论文30余篇,申请发明专利20余项。liutaikai@gdinm.com   
作者简介:  李聪,长沙理工大学能源与动力工程学院教授、硕士研究生导师。2007年中南林业科技大学机械工程专业本科毕业,2013年湖南大学材料科学与工程专业博士毕业后到长沙理工大学工作至今。目前主要从事能源材料、动力设备关键部件失效分析等方面的研究工作。发表论文60余篇,包括Scripta Materialia、Wear、Materials Science and Engineering A、Journal of Materials Research and Technology、Journal of Alloys and Compounds等。
余冉,2020年6月取得郑州工商学院学士学位,现为长沙理工大学能源与动力工程学院硕士研究生,同时在广东省科学院新材料研究所联合培养,在刘太楷高级工程师、李聪教授的指导下进行研究。目前主要研究领域为甲烷水蒸气催化重整。
†共同第一作者
引用本文:    
李聪, 余冉, 刘太楷, 邓春明, 邓畅光, 刘敏. 基于3D打印技术的甲烷水蒸气重整研究[J]. 材料导报, 2024, 38(10): 23020015-9.
LI Cong, YU Ran, LIU Taikai, DENG Chunming, DENG Changguang, LIU Min. Study of Methane Steam Reforming Based on 3D-Printing Technology. Materials Reports, 2024, 38(10): 23020015-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020015  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23020015
1 Soleymani E, Ghavami G S, Ghaebi H. Renewable Energy, 2021, 177(11), 495.
2 Shen Y X. Automobile Applied Technology, 2021, 46(7), 3 (in Chinese).
沈元兴. 汽车实用技术, 2021, 46(7), 3.
3 Dufour A U. Journal of Power Sources, 1998, 71(1), 19.
4 Xian C N. China Electrical Equipment Industry, 2019, 32(3), 70 (in Chinese).
仙存妮. 电器工业, 2019, 32(3), 70
5 Xu J, Yeung C, Ni J. Applied Catalysis A General:An International Journal Devoted to Catalytic Science and Its Applications, 2008, 44(2), 345.
6 Sperle T, Chen D, Lødeng R, et al. Applied Catalysis A:General, 2005, 282(1-2), 195.
7 Roh H S, Jun K W, Dong W S, et al. Journal of Molecular Catalysis A:Chemical, 2002, 181(1-2), 137.
8 Xu Z, Li Y, Zhang J, et al. Applied Catalysis A:General, 2001, 210(1-2), 45.
9 Santos A, Damyanova S, Teixeira G, et al. Applied Catalysis A:General, 2005, 290(1-2), 123.
10 Dutta G, Waghmare U V, Baidya T, et al. Chemistry of Materials, 2006, 18(14), 3249.
11 Laosiripojana N, Sutthisripok W, Kim-Lohsoontorn P, et al. International Journal of Hydrogen Energy, 2010, 35(13), 6747.
12 Soria J, Coronado J M, Conesa J C. Journal of the Chemical Society, Faraday Transactions, 1996, 92(9), 1619.
13 Morterra C, Bolis V, Magnacca G. Journal of the Chemical Society, Fa-raday Transactions, 1996, 92(11), 1991.
14 Park D, Moon D J, Kim T. Fuel Processing Technology, 2014, 124, 97.
15 Park D, Moon D J, Kim T. Fuel Processing Technology, 2013, 112, 28.
16 Rosen B A, Gileadi E, Eliaz N. Catalysis Communications, 2016, 76, 23.
17 Wei Q, Li H, Liu G, et al. Nature Communications, 2020, 11(1), 1.
18 Parra-Cabrera C, Achille C, Kuhn S, et al. Chemical Society Reviews, 2018, 47(1), 209.
19 Yang Y Z, Yang J L, Zeng T, et al. Chinese Quarterly of Mechanics, 2007, 28(4), 503 (in Chinese).
杨亚政, 杨嘉陵, 曾涛, 等. 力学季刊, 2007, 28(4), 503.
20 Jung A, Wocker M, Chen Z, et al. Materials and Design, 2015, 88, 1021.
21 Zeng W, Li L, Song M, et al. International Journal of Hydrogen Energy, 2022.
22 Zhang Y S. The Ni-based catalyst performance study for methane steam reforming in solid oxide fuel cell system. Master’s Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
张雨舒. SOFC系统甲烷水蒸汽重整Ni基催化剂性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
23 Li R Y, Hu C W, Yang Z, et al. Journal of Sichuan University(Nature Science Edition) , 1997(6), 95 (in Chinese).
李荣勇, 胡常伟, 杨争, 等. 四川大学学报(自然科学版), 1997(6), 95.
24 Chen S, Wang S S, Shi K, et al. Physica C:Superconductivity, 2005, 419(1), 7.
25 Wang W X, Liu M, Qiu K Q, et al. Materials Reporters, 2022, 36(S1), 43 (in Chinese).
王文旋, 刘敏, 邱克强, 等. 材料导报, 2022, 36(S1), 43.
[1] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[2] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[3] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[6] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[7] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[8] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[9] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[10] 赵冬梅, 赵有璟, 王敏. 双极膜水解离性能改进研究进展[J]. 材料导报, 2024, 38(10): 23050035-9.
[11] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[12] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[13] 刘雄飞, 侯冠宇, 蔡华崇, 李之建. 协同连续布筋增韧喷射3D打印混凝土的抗弯性能[J]. 材料导报, 2024, 38(1): 22090102-6.
[14] 张玉金, 杨琦, 张瑞, 高宇新, 拜永孝. 硅胶载体的制备及在聚烯烃催化剂领域中的应用[J]. 材料导报, 2024, 38(1): 22040363-11.
[15] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed