Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 22010069-5    https://doi.org/10.11896/cldb.22010069
  金属与金属基复合材料 |
剧烈扭转压缩轧制45钢超细晶棒组织演变机理
赵嘉豪1,2, 庞玉华1,2,*, 孙琦1,2, 牛犇1,2, 刘东3, 张喆3
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省冶金工程技术研究中心,西安 710055
3 西北工业大学材料学院,西安 710072
Microstructure Evolution Mechanism of Ultrafine Grained Bar of 45 Steel Rolled by Severe Torsional Compression
ZHAO Jiahao1,2, PANG Yuhua1,2,*, SUN Qi1,2, NIU Ben1,2, LIU Dong3, ZHANG Zhe3
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Metallurgical Engineering Technology Research Center of Shaanxi Province, Xi'an 710055, China
3 School of Materials, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 25884KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于自主研制的剧烈扭转压缩轧制技术,以45钢为研究对象,在750 ℃下采用48%径缩率经一次轧制成形,获得了直径为25 mm的超细晶棒。借助扫描电子显微镜(SEM)、电子背散射衍射(EBSD)和透射电子显微镜(TEM)分析了微观组织演变规律及晶粒细化机理,并对力学性能进行了测定分析。结果表明,心部扭转压缩程度相对边部略弱,晶粒沿轴向具有取向性,晶粒尺寸细化至2.3 μm;边部扭转压缩程度剧烈,晶粒取向分布均匀且细化显著,晶粒尺寸为1.7 μm;晶粒主要细化机理:因剧烈扭转压缩形变诱导了奥氏体向铁素体的转变,以及发生了充分的连续动态回复再结晶过程;轧后棒材屈服强度、抗拉强度及延伸率分别为402.5 MPa、643.5 MPa及25.7%,较轧制前分别提升24%、5.6%及14.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵嘉豪
庞玉华
孙琦
牛犇
刘东
张喆
关键词:  剧烈扭转压缩变形  超细晶  动态回复再结晶  形变诱导铁素体相变    
Abstract: Based on the self-developed severe torsional compression rolling method, taking 45 steel as the research object, the ultrafine-grained bar with a diameter of 25 mm was obtained by single pass rolling at 750 ℃ with a diameter reduction rate of 48%. The microstructure evolution and grain refinement mechanism were analyzed by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM), and the mechanical properties were measured and analyzed. The results show thatthe degree of torsional compression in the center of the bar was slightly weaker than that of the edge, the grains were oriented along the axial direction and the grain size was refined to 2.3 μm. In contrast, the edge region experienced intense torsional compression, resulting in a uniform distribution of grain orientation and significant grain size refinement to 1.7 μm. The main refinement mechanism of grain:the transformation from austenite to ferrite induced by severe torsional compression deformation, as well as the occurrence of a sufficient continuous dynamic recovery and dynamic recrystallization process. After rolling, the yield strength, tensile strength and elongation of the steel bar were 402.5 MPa, 643.5 MPa and 25.7%, respectively, representing a 24%, 5.6%, and 14.7% increase compared to the pre-rolling values.
Key words:  severe torsional compression deformation    ultrafine grain    dynamic recovery and dynamic recrystallization    deformation-induced ferrite transformation
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TG156.34  
基金资助: 陕西省重点研发计划(2020GY-253)
通讯作者:  * 庞玉华,现为西安建筑科技大学冶金工程学院教授、硕士研究生导师。1988年和1991年毕业于东北大学,分别获工学学士和工学硕士学位;2001年毕业于西北工业大学,获得工学博士学位。目前主要从事稀有金属材料加工、轧制新技术新工艺、先进钢结构工程材料制备等方面的研究工作。发表论文60余篇,其中SCI论文20余篇,发明专利30余项。pyhyyl@126.com   
作者简介:  赵嘉豪,2018年本科毕业于西安建筑科技大学材料成型及控制工程。现为西安建筑科技大学材料加工工程硕士研究生,在庞玉华教授的指导下进行研究。目前主要从事先进钢结构工程材料制备及超细晶细化机理的研究。
引用本文:    
赵嘉豪, 庞玉华, 孙琦, 牛犇, 刘东, 张喆. 剧烈扭转压缩轧制45钢超细晶棒组织演变机理[J]. 材料导报, 2023, 37(15): 22010069-5.
ZHAO Jiahao, PANG Yuhua, SUN Qi, NIU Ben, LIU Dong, ZHANG Zhe. Microstructure Evolution Mechanism of Ultrafine Grained Bar of 45 Steel Rolled by Severe Torsional Compression. Materials Reports, 2023, 37(15): 22010069-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010069  或          http://www.mater-rep.com/CN/Y2023/V37/I15/22010069
1 Wu S, Li X C, Zhang J, et al. Acta Metallurgica Sinica, 2014, 50 (4), 400 (in Chinese).
吴斯, 李秀程, 张娟, 等. 金属学报, 2014, 50(4), 400.
2 Huang G K, Qu L D, Lu Y Z, et al. Vacuum, 2018, 153, 39.
3 Shen J J. Hebei metallurgy, 2017 (8), 6 (in Chinese).
沈俊杰. 河北冶金, 2017 (8), 6.
4 Valiev R Z, Estrin Y, Horita Z, et al. Journal of Metals, 2006, 58(4), 33.
5 Bagherpour E, Pardis N, Reihanian M, et al. The International Journal of Advanced Manufacturing Technology, 2018, 100(5-8), 1647.
6 Dobatkin S, Zrnik J, Nikulin S, et al. Journal of Physics:Conference Series, 2010, 240(1), 012127.
7 Feng G H, Du Z Z, Wang J T, et al. Journal of Materials Research, 2011, 25 (2), 151 (in Chinese).
冯广海, 杜忠泽, 王经涛, 等. 材料研究学报, 2011, 25(2), 151.
8 Zrnik J, Pippan R, Scheriau S, et al. Journal of Materials Science, 2010, 45(17), 4822.
9 Ma E. Scripta Materialia, 2003, 49(7), 663.
10 Jia N N, Guo K, He Y M, et al. Materials Science and Engineering:A, 2017, 700, 175.
11 Liu L, Shi M J, Li H B. Hot Working Process, 2019, 48(3), 35 (in Chinese).
刘乐, 石妙杰, 李红斌. 热加工工艺, 2019, 48(3), 35.
12 Liu B X, Fan K Y, Yin F X, et al. Materials Science and Engineering:A, 2020, 774, 138954.
13 Lin P C, Pang Y H, Sun Q, et al. Acta Metallurgica Sinica, 2021, 57 (5), 605 (in Chinese).
林鹏程, 庞玉华, 孙琦, 等. 金属学报, 2021, 57(5), 60.
14 刘东, 庞玉华, 陶镳. 中国专利, 202010809863. 9, 2020.
15 Zhang Z, Liu D, Wang Y S, et al. Materials Letters, 2020, 276, 128209.
16 Pang Y H, Lin P C, Sun Q, et al. Archives of Civil and Mechanical Engineering, 2020, 20(4), 1.
17 Chen J L, Feng G H, Yang D, et al. Special steel, 2021, 42 (3), 12 (in Chinese).
陈继林, 冯光宏, 杨栋, 等. 特殊钢, 2021, 42(3), 12.
18 Storojeva L, Kaspar R, Ponge D. ISIJ International, 2004, 44(7), 1211.
19 Arruabarrena J, López B, Rodriguez-Ibabe J M. Metallurgical and Materials Transactions A, 2013, 45(3), 1470.
20 Dong H, Sun X J. Current Opinion in Solid State and Materials Science, 2005, 9(6), 269.
21 Wu S D, An X H, Han W Z, et al. Acta Metallurgica Sinica, 2010, 46 (3), 257 (in Chinese).
吴世丁, 安祥海, 韩卫忠, 等. 金属学报, 2010, 46(3), 257.
22 Wang Y M. Controlled rolling and controlled cooling of steel, Metallurgical Industry Press, China 2009, pp.15 (in Chinese).
王有铭. 钢材的控制轧制和控制冷却, 冶金工业出版社, 2009, pp.15.
[1] 石玉, 李正宁, 盛捷, 喇培清. 纳米高强钢铁材料增塑研究进展[J]. 材料导报, 2021, 35(7): 7155-7161.
[2] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[3] 王永强, 朱国辉, 陈其伟, 丁汉林, 万德成. 高强度超细晶金属材料塑性行为及增塑研究进展[J]. 材料导报, 2018, 32(19): 3414-3422.
[4] 施 麒, Yau Yau Tse, Rebecca Higginson, 陈 峰, 陶麒鹦. 退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1577-1581.
[5] 章震威, 王军丽, 张清龙, 史庆南. 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1): 116-125.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed