Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 22030289-7    https://doi.org/10.11896/cldb.22030289
  无机非金属及其复合材料 |
氧化石墨烯与氮掺杂氧化石墨烯量子点负载去氧地胆草内酯抑制肿瘤细胞的研究
韩欣彤1, 曹阳1,2, 文峰1, 高助威3, 李成欣3, 于晓龙1,*
1 海南大学材料科学与工程学院,海口 570228
2 琼台师范学院海南省儿童认知与行为发展重点实验室(筹),海口 571127
3 海南大学化学工程与技术学院,海口 570228
Study on the Inhibition of Tumor Cells by Deoxyelephantopin Loaded on Graphene Oxide Versus Nitrogen-doped Graphene Oxide Quantum Dots
HAN Xintong1, CAO Yang1,2, WEN Feng1, GAO Zhuwei3, LI Chengxin3, YU Xiaolong1,*
1 School of Materials Science and Engineering, Hainan University, Haikou 570228, China
2 Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou 571127, China
3 School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
下载:  全 文 ( PDF ) ( 38112KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以膀胱肿瘤细胞UMUC-3为模型,研究了氧化石墨烯(GO)和氮掺杂氧化石墨烯量子点(NGQD)负载抗癌药物去氧地胆草内酯(DEO)体外抑制肿瘤细胞的效果。分别用Hummers法制备GO,球磨法制备NGQD,并通过超声负载的方法将DEO与GO、NGQD进行接枝。采用傅里叶变换红外光谱仪分析DEO与GO、NGQD的接枝机理,通过扫描电子显微镜分析其微观结构和元素分布。使用MTT比色法测试肿瘤细胞在GO-DEO、NGQD-DEO作用下的增殖情况,使用免疫荧光技术进一步分析NGQD-DEO抑制率更高的原因。结果表明,GO与NGQD均可通过共价键接枝的方式负载DEO,同时对比得到,GO-DEO、NGQD-DEO负载组均可通过破坏细胞骨架的方式提高对肿瘤细胞的抑制率,其中NGQD负载15 μmol/L DEO且时间为48 h和72 h时对肿瘤细胞骨架的破坏效果最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩欣彤
曹阳
文峰
高助威
李成欣
于晓龙
关键词:  药物载体  去氧地胆草内酯  膀胱癌细胞  细胞增殖  细胞骨架    
Abstract: Using bladder tumor cell UMUC-3 as a model, the anti-tumor activity of deoxyelephantopin (DEO) loaded on graphene oxide (GO) and nitrogen-doped graphene oxide quantum dots (NGQD) in vitro was studied. GO was prepared by Hummers method, NGQD was prepared by ball milling method, and DEO was connected onto GO and NGQD by ultrasonic loading. The grafting mechanisms of GO-DEO and NGQD-DEO were analyzed by FTIR. The microstructure and element distribution of GO-DEO and NGQD-DEO were analyzed by scanning electron microscope. MTT colorimetry was used to test the cell proliferation induced by GO-DEO and NGQD-DEO, and immunofluorescence was used to further analyze the reasons for NGQD-DEO inhibition. The results show that both GO and NGQD can load DEO by covalent bond grafting. In comparison, GO-DEO and NGQD-DEO groups can enhance the inhibition of tumor cells by destroying the cytoskeleton, with NGQD loading 15 μmol/L DEO for 48 h and 72 h were the best time to destroy the cytoskeleton.
Key words:  drug carrier    deoxyelephantopin    bladder cancer cell    cell proliferation    cytoskeleton
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  R318.08  
基金资助: 海南省省级平台项目海南省生物医学材料研发创新服务平台(筹)资助项目(RZ2000007005)
通讯作者:  *于晓龙,海南大学材料科学与工程学院副教授、硕士研究生导师。2008 年毕业于中山大学理工学院凝聚态物理专业,获得理学博士学位,2012 年清华大学材料系博士后出站。目前主要从事生物医用材料方面的研究,先后主持或参与国家科技计划973和863项目、国家科技支撑计划课题项目、省国际合作专项、省自然科学基金等课题五项,已发表高水平学术论文30余篇。获得2011年世界生物医用材料大会(希腊)“杰出青年科学家奖”、生物医用材料国际会议(海南)“优秀青年科学家奖”。yuxiaolong@hainanu.edu.cn   
作者简介:  韩欣彤,2015年6月于海南大学获得工学学士学位,现为海南大学材料科学与工程学院硕士研究生,在于晓龙副教授的指导下进行研究。目前主要研究领域为生物材料。
引用本文:    
韩欣彤, 曹阳, 文峰, 高助威, 李成欣, 于晓龙. 氧化石墨烯与氮掺杂氧化石墨烯量子点负载去氧地胆草内酯抑制肿瘤细胞的研究[J]. 材料导报, 2023, 37(14): 22030289-7.
HAN Xintong, CAO Yang, WEN Feng, GAO Zhuwei, LI Chengxin, YU Xiaolong. Study on the Inhibition of Tumor Cells by Deoxyelephantopin Loaded on Graphene Oxide Versus Nitrogen-doped Graphene Oxide Quantum Dots. Materials Reports, 2023, 37(14): 22030289-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030289  或          http://www.mater-rep.com/CN/Y2023/V37/I14/22030289
1 Sung H, Ferlay J, Siegel R L, et al. CA:a Cancer Journal for Clinicians, 2021, 71, 209.
2 Richards K A, Smith N D, Steinberg G D. The Journal of Urology, 2014, 191, 1655.
3 Mariappan P. Nature Reviews Urology, 2021, 18, 253
4 Cabas P, Rizzo M, Giuffre M, et al. Urologic Oncology, Seminars and Original Investigations, 2021, 39, 85.
5 Tae B S, Kim J K, Kang M, et al. Scientific Reports, 2017, 7, 1380.
6 Gao Y F, Lai F, Liu J B, et al. International Urology and Nephrology, 2022, 54, 479.
7 Priya P D, Manisha H, Sudhakaraprasad K. Particle & Particle Systems Characterization, 2018, 35, 8.
8 Vijay P J, Shivani C, Deepa S, et al. European Polymer Journal, 2021, 142, 110124.
9 Pan Q, Lv Y, Williams G R, et al. Carbohydrate Polymers, 2016, 151, 812.
10 Zheng X T, Ma X Q, Li C M. Journal of Colloid and Interface Science, 2016, 467, 35.
11 Donskyi I S, Chen Y, Nickl P, et al. Nanoscale, 2020, 12, 14222.
12 Guday G, Donskyi I S, Gholami M F, et al. Small, 2019, 15, e1805430.
13 Azam N, Najabat A M, Javaid K T. Frontiers in Materials, 2021, 8, 700403.
14 Ghafary S M, Nikkhah M, Hatamie S, et al. Scientific Reports, 2017, 7, 9552.
15 Deng M, Cao X, Guo L, et al. Dalton Transactions, 2020, 49, 2308.
16 Bao Q, Hu P, Ren W, et al. Chem, 2020, 6, 2283.
17 Kimata R, Kondo Y, Nemoto K, et al. International Journal of Clinical Oncology, 2010, 15, 433.
18 Lagoutte R, Serba C, Abegg D, et al. Nature Communications, 2016, 7, 12470.
19 Aravindaram K, Chen Y, Wang P, et al. Planta Medica, 2011, 77, PM100.
20 Nakagawa K, Chen J Y, Cheng Y T, et al. Molecular Oncology, 2016, 10, 921.
21 Shiau J Y, Chang Y Q, Nakagawa K, et al. Frontiers in Pharmacology, 2017, 8, 398.
22 Ji D, Zhong X, Huang P, et al. Aging-US, 2020, 12, 11116.
23 Farha A K, Dhanya S R, Mangalam S N, et al. Cell Biology and Toxicology, 2014, 30, 331.
24 Kabeer F A, Rajalekshmi D S, Nair M S, et al. Integrative Medicine Research, 2017, 6, 190.
25 Li C, Gao Z, Liu Z. Frontiers of Materials Science, 2021, 21, 578.
26 Cao H, Huang D, Guo L, et al. Journal of Biomedical Materials Research Part A, 2020, 108, 2484.
27 Tian K, Su Z, Wang H, et al. Composites Part A:Applied Science and Manufacturing, 2017, 94, 41.
28 Sandoval S, Muthuswamy E, Chen J, et al. Journal of the European Ceramic Society, 2020, 40, 6322.
29 Haidari M M, Kim H, Kim J H, et al. Scientific Reports, 2020, 10, 8258.
30 Yuan B, Xing W, Hu Y, et al. Carbon, 2016, 101, 152.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 刘欢, 秦凌浩. 血小板囊泡作为药物递送载体的研究综述[J]. 材料导报, 2022, 36(19): 21010078-8.
[4] 义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
[5] 雷颖, 葛冲冲, 冯瑾, 尚娇娇. pH响应型三维纳米纤维的构建及其性能研究[J]. 材料导报, 2021, 35(z2): 508-512.
[6] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[7] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[8] 韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
[9] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[10] 黄啸,郑曦,易彩霞. 光响应多功能药物载体的制备及其对宫颈癌细胞的抑制作用*[J]. 材料导报编辑部, 2017, 31(10): 37-40.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed