Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21100129-9    https://doi.org/10.11896/cldb.21100129
  高分子与聚合物基复合材料 |
磁性功能支架用于骨组织工程的研究进展
段晶, 吴佳蕾, 林涛, 邵慧萍*
北京科技大学新材料技术研究院,北京 100083
Research Progress of Magnetic Functional Scaffolds for Bone Tissue Engineering
DUAN Jing, WU Jialei, LIN Tao, SHAO Huiping*
Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 21186KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 支架引导再生在创伤、肿瘤、切除等引起的严重骨缺损的治疗和修复中起着至关重要的作用。目前发展的磁性功能支架已被证明自身或者结合外部磁场可以影响细胞代谢行为,通过磁性环境来促进骨组织再生。特别是其结合外部磁场的作用,可以有效远程控制药物释放和激活细胞表面通道,介导一系列成骨相关通路,诱导细胞分化,促进组织生长、骨缺损再生等反应。同样,磁性支架在热疗、磁共振成像、靶向递送等方面也有着广泛的应用潜能。磁性支架可提高骨组织工程效率,为骨缺损的修复提供了一定保障。本文综述了磁性支架的复合、制备技术、促进骨再生的机制,以及磁场和磁性支架的协同功能,并总结了几种磁性功能支架在骨组织修复工程领域中的研究及应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段晶
吴佳蕾
林涛
邵慧萍
关键词:  磁性纳米颗粒(MNPs)  磁性功能支架  骨修复  骨组织工程    
Abstract: Scaffold-guided regeneration performs an essential function in the therapy of severe bone defects caused by trauma, tumor, resection, etc. Magnetic scaffolds have been demonstrated to influence cellular metabolic behavior by themselves or external magnetic fields. In particular, the synergistic function of magnetic scaffolds and external magnetic fields can effectively control the release of drugs and activate channels on the cell surface to mediate a series of osteogenesis-related pathways, promoting cell differentiation and tissue regeneration. Additionally, the magne-tic scaffolds have potential applications in thermal therapy, magnetic resonance imaging, targeted delivery, etc. The magnetic scaffolds provide a certain guarantee for improving the repair efficiency of bone tissue engineering. The composite methods, preparation technologies and mechanism of promoting bone regeneration for the magnetic scaffolds, as well as the synergistic function of magnetic field and magnetic scaffold, are reviewed in this paper. It also summarizes the applicatory research of several magnetic scaffolds in bone tissue repair engineering.
Key words:  magnetic nanoparticles (MNPs)    magnetic scaffolds    bone repair    bone tissue engineering
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  R318.08  
通讯作者:  *邵慧萍,北京科技大学新材料技术研究院教授。1995年毕业于东北大学化学系,获学士学位;2003年、2006年毕业于韩国忠南大学材料科学与工程系,获得硕士、博士学位。目前主要从事3D打印生物医用磁性材料、陶瓷材料、复合材料研究及其应用。在国内外期刊发表学术论文100余篇,其中被SCI、EI收录60余篇。shaohp@ustb.edu.cn   
作者简介:  段晶,2020年6月毕业于河北科技大学,获得工学学士学位。现为北京科技大学新材料技术研究院硕士研究生,在邵慧萍教授的指导下进行研究,目前主要研究领域为磁性生物材料及其复合材料。
引用本文:    
段晶, 吴佳蕾, 林涛, 邵慧萍. 磁性功能支架用于骨组织工程的研究进展[J]. 材料导报, 2023, 37(10): 21100129-9.
DUAN Jing, WU Jialei, LIN Tao, SHAO Huiping. Research Progress of Magnetic Functional Scaffolds for Bone Tissue Engineering. Materials Reports, 2023, 37(10): 21100129-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100129  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21100129
1 Black J D J, Tadros B J. Orthopaedics and Trauma, 2020, 34(3), 113.
2 Zeng J H, Liu S W, Xiong L, et al. Journal of Orthopaedic Surgery and Research, 2018, 13, 33.
3 Ho-Shui-Ling A, Bolander J, Rustom L E, et al. Biomaterials, 2018, 180, 143.
4 Roseti L, Parisi V, Petretta M, et al. Materials Science and Engineering C, 2017, 78, 1246.
5 Shuai C J, Yang W J, He C X, et al. Materials & Design, 2020, 185, 108275.
6 Ortolani A, Bianchi M, Mosca M, et al. Joints, 2017, 4(4), 228.
7 Deng Y, Jiang C, Li C, et al. Scientific Reports, 2017, 7, 5588.
8 Przekora A. International Journal of Molecular Sciences, 2019, 20(2), 435.
9 Bin S Z, Wang A L, Guo W, et al. Polymers, 2020, 12(9), 2045.
10 Peng J F, Zhao J J, Long Y L, et al. Frontiers in Materials, 2019, 6, 268.
11 Li Y, Ye D W, Li M X, et al. Chemphyschem, 2018, 19(16), 1965.
12 Li S, Wei C, Lv Y. Current Stem Cell Research and Therapy, 2020, 15(5), 428.
13 Fan D Y, Wang Q, Zhu T J, et al. Frontiers in Chemistry, 2020, 8, 745.
14 Ribas R G, Schatkoski V M, Montanheiro T L D A, et al. Ceramics International, 2019, 45(17), 21051.
15 Wubneh A, Tsekoura E K, Ayranci C, et al. Acta Biomaterialia, 2018, 80, 1.
16 Xia Y, Chen H M, Zhang F M, et al. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46, 423.
17 Xia Y, Guo Y, Yang Z K, et al. Materials Science and Engineering C, 2019, 104, 109955.
18 Torgbo S, Sukyai P. Materials Chemistry and Physics, 2019, 237, 121868.
19 Russo T, Peluso V, Gloria A, et al. Nanomaterials, 2020, 10(3), 577.
20 Zhu Y, Jiang P P, Luo B, et al. Nanoscale, 2019, 11(14), 6817.
21 Hosseinabadi M B, Khanjani N, Samaei S E, et al. International Journal of Radiation Biology, 2019, 95(11), 1573.
22 Bigham A, Aghajanian A H, Saudi A, et al. Materials Science and Engineering C, 2020, 109, 110579.
23 Wang Q Y, Tang Y Q, Ke Q F, et al. Journal of Materials Chemistry B, 2020, 8(24), 5280.
24 Shubayev V I, Pisanic T R, Jin S. Advanced Drug Delivery Reviews, 2009, 61(6), 467.
25 Levy M, Luciani N, Alloyeau D, et al. Biomaterials, 2011, 32(16), 3988.
26 Popescu R C, Andronescu E, Grumezescu A M. Romanian Journal of Morphology and Embryology, 2014, 55(3), 1013.
27 Lui Y S, Sow W T, Tan L P, et al. Acta Biomaterialia, 2019, 92, 19.
28 Pantulap U, Arango-Ospina M, Boccaccini A R. Journal of Materials Science-Materials in Medicine, 2022, 33(1), 3.
29 Shi H S, Yang S Y, Zeng S H, et al. Applied Materials Today, 2019, 15(2019), 100.
30 Cho Y H, Lee S J, Lee J Y, et al. International Journal of Antimicrobial Agents, 2002, 19(6), 576.
31 Bigham A, Foroughi F, Motamedi M, et al. Ceramics International, 2018, 44(10), 11798.
32 Wu C T, Zhou Y H, Fan W, et al. Biomaterials, 2012, 33(7), 2076.
33 Czarnek K, Terpilowska S, Siwick A K. Central European Journal of Immunology, 2015, 40(2), 236.
34 John L, Janeta M, Szafert S. Materials Science & Engineering C, 2017, 78, 901.
35 Marie P J. Current Opinion in Pharmacology, 2005, 5(6), 633.
36 Kirrane B M, Nelson L S, Hoffman R S. Basic & Clinical Pharmacology & Toxicology, 2006, 99(5), 358.
37 Zhao R, Yang X, Zhu X D, et al. Progress in Chemistry, 2021, 33(4), 533.
38 Wang Z, Liu C, Chen B, et al. International Journal of Biological Macromolecules, 2021, 168, 38.
39 Tampieri A, Landi E, Valentini F, et al. Nanotechnology, 2011, 22(1), 015104.
40 Farzin A, Fathi M, Emadi R. Materials Science and Engineering C, 2017, 70, 21.
41 Panseri S, Russo A, Giavaresi G, et al. Journal of Biomedical Materials Research-Part A, 2012, 100(9), 2278.
42 Diaz E, Blanca V M, Ribeiro S, et al. Nanomaterials, 2018, 8(9), 678.
43 Hajinasab A, Saber-Samandari S, Ahmadi S, et al. Materials Chemistry and Physics, 2018, 204, 378.
44 Karahaliloglu Z, Yalcin E, Demirbilek M, et al. Journal of Bioactive and Compatible Polymers, 2017, 32(6), 596.
45 Paun I A, Popescu R C, Calin B S, et al. International Journal of Molecular Sciences, 2018, 19(2), 495.
46 Levy G K, Birch M A, Brooks R A, et al. Journal of Clinical Medicine, 2019, 8(10), 1522.
47 Nelson I, Gardner L, Carlson K, et al. Acta Materialia, 2019, 173, 106.
48 Zhu P F, Yang W Y, Wang R, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36435.
49 Moghadam M Z, Hassanajili S, Esmaeilzadeh F, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 115.
50 Zhao Y, Fan T T, Chen J D, et al. Colloids and Surfaces B:Biointerfaces, 2019, 174, 70.
51 Ghorbani F, Zamanian A, Shams A, et al. IET Nanobiotechnology, 2019, 13(8), 860.
52 Wang D, Lin H M, Jiang J J, et al. Science and Technology of Advanced Materials, 2013, 14(2), 025004.
53 Gloria A, Russo T, D'Amora U, et al. Journal of the Royal Society Interface, 2013, 10(80), 20120833.
54 Salmani M M, Hashemian M, Khandan A. Ceramics International, 2020, 46(17), 27299.
55 Amarjargal A, Tijing L D, Park C H, et al. European Polymer Journal, 2013, 49(12), 3796.
56 Charbonnier B, Hadida M, Marchat D. Acta Biomaterialia, 2021, 121, 1.
57 Dankova J, Buzgo M, Vejpravova J, et al. International Journal of Nanomedicine, 2015, 10, 7307.
58 Saraiva A S, Ribeiro I A C, Fernandes M H, et al. International Journal of Pharmaceutics, 2021, 593, 120097.
59 Hong D, Chou D T, Velikokhatnyi O I, et al. Acta Biomaterialia, 2016, 45, 375.
60 Nelson I, Ogden T A, Al Khateeb S, et al. Advanced Engineering Materials, 2019, 21(3), 1801092.
61 Nelson I, Varga J, Wadsworth P, et al. JOM, 2020, 72(4), 1498.
62 Zhang F H, Wang L L, Zheng Z C, et al. Composite part A-Applied Science and Manufacturing, 2019, 125, 105571.
63 Goranov V, Shelyakova T, De Santis R, et al. Scientific Reports, 2020, 10(1), 2289.
64 Chen C G, Wu J L, Wang S Q, et al. Ceramics International, 2021, 47(15), 21038.
65 Gil S, Mano J F. Biomaterials Science, 2014, 2(6), 812.
66 Ross C L, Ang D C, Almeida-Porada G. Frontiers in Immunology, 2019, 10(266), 266.
67 Kim E C, Leesungbok R, Lee S W, et al. Bioelectromagnetics, 2015, 36(4), 267.
68 Maredziak M, Smieszek A, Tomaszewski K A, et al. Journal of Magne-tism and Magnetic Materials, 2016, 398, 235.
69 Chuo W Y, Ma T C, Saito T, et al. Journal of Hard Tissue Biology, 2013, 22(2), 227.
70 Zhang J, Ding C, Ren L, et al. Progress in Biophysics & Molecular Biology, 2014, 114(3), 146.
71 Chalidis B, Sachinis N, Assiotis A, et al. International Journal of Immunopathology and Pharmacology, 2011, 24, 17.
72 Yan J L, Zhou J, Ma H P, et al. Molecular and Cellular Endocrinology, 2015, 404, 132.
73 Ross C L. Biotechnology Progress, 2017, 33(1), 5.
74 Li J K J, Lin J C A, Liu H C, et al. Ultrasound in Medicine and Biology, 2006, 32(5), 769.
75 Daish C, Blanchard R, Fox K, et al. Annals of Biomedical Engineering, 2018, 46(4), 525.
76 He J Q, Zhang Y S, Chen J, et al. Aging Clinical and Experimental Research, 2015, 27(1), 13.
77 Xu H, Gu N. Frontiers of Materials Science, 2014, 8(1), 20.
78 Paun I A, Calin B S, Mustaciosu C C, et al. Materials, 2019, 12(17), 2834.
79 Yun H, Ahn S J, Park K R, et al. Biomaterials, 2016, 85, 88.
80 Huang J H, Wang D, Chen J L, et al. Saudi Pharmaceutical Journal, 2017, 25(4), 575.
81 Jiang P F, Zhang Y X, Zhu C N, et al. Acta Biomaterialia, 2016, 46, 141.
82 Panseri S, Cunha C, D'Alessandro T, et al. Journal of Nanobiotechnology, 2012, 10, 32.
83 Zeng X B, Hu H, Xie L Q, et al. International Journal of Nanomedicine, 2012, 7, 3365.
84 Zhang C, Cai Y Z, Lin X J, et al. Frontiers in Cell and Developmental Biology, 2020, 8, 526.
85 Li L, Yang G, Li J, et al. Materials Science and Engineering C, 2014, 34, 252.
86 Liu Q M, Li H, Lam K Y. Bioelectrochemistry, 2019, 129, 90.
87 Panseri S, Russo A, Sartori M, et al. Bone, 2013, 56(2), 432.
88 Fuhrer R, Hofmann S, Hild N, et al. PloS One, 2013, 8(11), e81362.
89 Russo A, Shelyakova T, Casino D, et al. Medical Engineering & Phy-sics, 2012, 34(9), 1287.
90 Bigham A, Aghajanian A H, Allandaneh S, et al. Ceramics International, 2019, 45(15), 19481.
91 Chen B D, Xiang H J, Pan S S, et al. Advanced Functional Materials, 2020, 30(34), 2002621.
92 Behrouzkia Z, Joveini Z, Keshavarzi B, et al. Oman Medical Journal, 2016, 31(2), 89.
93 Yan F F, Liu Z B, Zhang T, et al. ACS Biomaterials Science & Enginee-ring, 2019, 5(11), 5833.
94 Lam T, Moy A, Lee H R, et al. Aiche Journal, 2020, 66(12), e17001.
95 Lu J W, Yang F, Ke Q F, et al. Nanomedicine:Nanotechnology, Biology, and Medicine, 2018, 14(3), 811.
96 Espinosa A, Di Corato R, Kolosnjaj-Tabi J, et al. ACS Nano, 2016, 10(2), 2436.
97 Fujisawa N, Takanohashi M, Chen L, et al. Science and Technology of Advanced Materials, 2021, 22(1), 522.
98 Gao Y, Lim J, Teoh S H, et al. Chemical Society Reviews, 2015, 44(17), 6306.
99 Yang F, Lu J W, Ke Q F, et al. Scientific Reports, 2018, 8, 7345.
100 Ge J H, Zhang Y, Dong Z R, et al. ACS Applied Materials & Interfaces, 2017, 9(24), 20771.
101 Mangual J O, Avilés M O, Ebner A D, et al. Journal of Magnetism and Magnetic Materials, 2011, 323(14), 1903.
102 Hu S Y, Zhou Y, Zhao Y T, et al. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(4), E2085.
103 Sajesh K M, Ashokan A, Gowd G S, et al. Nanomedicine:Nanotechno-logy, Biology and Medicine, 2019, 18, 179.
104 Liu Q, Feng L B, Chen Z L, et al. Frontiers in Bioengineering and Biotechnology, 2020, 8, 697.
[1] 梁庆优, 邓春林. 长骨大段骨缺损修复材料的力学性能及制备策略[J]. 材料导报, 2021, 35(13): 13100-13108,13118.
[2] 武伟, 董季玲, 张锦山, 范海兵, 尹坚, 刘洋, 丁皓, 曹鹏军. 功能化磁性纳米颗粒吸附废水中重金属的研究进展[J]. 材料导报, 2020, 34(17): 17124-17131.
[3] 晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(23): 4008-4015.
[4] 沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
[5] 李强, 魏磊山, 孙旭东. 凝胶注模成型技术制备氧化石墨烯/HA复合材料的研究*[J]. 《材料导报》期刊社, 2017, 31(18): 39-42.
[6] 漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed