Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 39-42    https://doi.org/10.11896/j.issn.1005-023X.2017.018.009
  材料研究 |
凝胶注模成型技术制备氧化石墨烯/HA复合材料的研究*
李强1, 魏磊山1, 孙旭东2
1 辽宁工业大学材料科学与工程学院,锦州 121001;
2 东北大学材料科学与工程学院,沈阳 110004
Study on Graphene Oxide/HA Composites Prepared by Gelcasting Technology
LI Qiang1, WEI Leishan1, SUN Xudong2
1 College of Materials Science & Engineering, Liaoning University of Technology, Jinzhou 121001;
2 School of Materials Science & Engineering, Northeastern University, Shenyang 110004
下载:  全 文 ( PDF ) ( 1337KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化石墨烯和纳米羟基磷灰石(HA)粉体为原料,采用凝胶注模成型技术制备了氧化石墨烯/HA复合材料。研究了有机单体、浆料固相含量和石墨烯含量对氧化石墨烯/HA浆料粘度的影响,观察了陶瓷浆料的凝胶固化过程并测量了固化后生坯的密度和抗压强度,分析了氧化石墨烯含量对烧结后复合材料抗弯强度和断裂韧性的影响,观察了试样断口的显微组织。研究结果表明,有机单体含量为15%(质量分数,下同),固相含量为45%,氧化石墨烯含量为1.5%时,氧化石墨烯/HA浆料的粘度最佳,为362.9 mPa·s,浆料的分散性良好,固化后生坯具有较高的密度和抗压强度。随氧化石墨烯含量的增加,复合材料的抗弯强度和断裂韧度均先增加后降低。当氧化石墨烯含量为1.5%时,1 150 ℃烧结样品的抗弯强度为81.5 MPa,断裂韧性为1.52 MPa·m1/2,分别比HA基体提高了151.8%和74.7%,因此添加氧化石墨烯后的HA复合材料的力学性能更佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李强
魏磊山
孙旭东
关键词:  HA复合材料  氧化石墨烯  凝胶注模成型  力学性能  骨修复材料    
Abstract: Graphene oxide (GO) and hydroxyapatite(HA) particles were used as initial materials to prepare GO/HA compo-sites by gelcasting method. The effects of the contents of organic monomer and graphene oxide,the solid content of the slurries on viscosity of GO/HA slurries were studied. The gelcasting processes of the GO/HA slurries were observed and the green density and compressive strength of green compacts were measured. The effects of GO contents on bending strength and fracture toughness of GO/HA composites were analyzed. The microstructure of the fracture surface of the HA composites were observed. The results show that at organic monomer of 15wt%, GO particles of 1.5wt% and the solid content of slurries of 45wt%, the GO/HA slurries have better viscosity of 362.9 mPa·s and good dispersion. The solidified compacts have better density and compressive strength. With the increase of the contents of the GO particles, the bending strength and fracture toughness of the HA composites first increase and then decrease. When the content of GO particles is 1.5wt%, the GO/HA composites sintered at 1 150 ℃ have bending strength of 81.5 MPa and flexural toughness of 1.52 MPa·m1/2, which are 151.8% and 74.7% higher than those of HA matrix. Therefore, the GO/HA composites have better mechanical properties with the addition of GO particles.
Key words:  HA composites    graphene oxide    gelcasting    mechanical property    bone repair material
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51405215);辽宁省自然科学基金-辽宁工业大学联合基金(201602378)
作者简介:  李强:男,1976年生,博士,教授,主要研究方向为生物医用材料 E-mail:liandqiangjz@163.com
引用本文:    
李强, 魏磊山, 孙旭东. 凝胶注模成型技术制备氧化石墨烯/HA复合材料的研究*[J]. 《材料导报》期刊社, 2017, 31(18): 39-42.
LI Qiang, WEI Leishan, SUN Xudong. Study on Graphene Oxide/HA Composites Prepared by Gelcasting Technology. Materials Reports, 2017, 31(18): 39-42.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.009  或          http://www.mater-rep.com/CN/Y2017/V31/I18/39
1 Liu D M, Troczynski T, Tseng W J.Water-based sol-gel synthesis of hydroxyapatite: Process development[J]. Biomaterials, 2001,22(13):1721.
2 Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomater, 2011,7(7):2769.
3 Hutmacher D W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000,21(24):2529.
4 Guo X D. Bone tissue engineering: Research progress of techniques to bone defect repair[J]. Int J Biomedical Eng, 2004,27(5):270(in Chinese).
郭晓东. 用组织工程学技术修复骨缺损研究进展[J]. 国际生物医学工程杂志,2004,27(5):270.5 Chen F. The investigation and development of biomedical materials containing hydroxyapatite[J]. China Ceram, 2006,42(4):8(in Chinese).
陈菲. 羟基磷灰石生物医用陶瓷材料的研究与发展[J]. 中国陶瓷, 2006,42(4):8.
6 Bolotin K, Sikes K, Hone J, et al. Temperature-dependent transport in suspended graphene[J]. Phys Rev Lett, 2008,101(9):67.
7 Katsnelson M I. Graphene: Carbon in two dimensions[J]. Mater Today, 2007,10(1):20.
8 Liu Z, Robinson J T, Sun X, et al. Pegylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. J Am Chem Soc, 2008,130(33):10876.
9 Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Res, 2008,1(3):203.
10Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chem Soc Rev, 2012,41(2):666.
11Verdejo R, Bernal M M, Romasanta L J, et al. Graphene filled po-lymer nanocomposites[J]. J Mater Chem, 2011,21(10):3301.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[12] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[13] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed