Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22040146-6    
  无机非金属及其复合材料 |
CFRP管约束混凝土柱轴压性能试验及有限元分析研究
李斌, 周薇
内蒙古科技大学土木工程学院,内蒙古 包头 014010
Experimental and Finite Element Analysis on Axial Compression Performance of Concrete Columns Confined with CFRP Tubes
LI Bin, ZHOU Wei
School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia,China
下载:  全 文 ( PDF ) ( 9720KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以长细比、约束效应系数和配箍率为参数,设计制作了六个碳纤维增强复合塑料(CFRP)管约束混凝土柱,并对其轴心受压受力性能进行试验。研究结果表明:CFRP管约束混凝土柱轴压力学性能与长细比、约束效应系数和配箍率关系紧密,影响强度从大到小依次为:约束效应系数、配箍率和长细比。在试验研究的基础上,利用ABAQUS非线性有限元软件对其轴压性能进行了数值模拟分析研究,对CFRP管约束混凝土柱的约束机理和CFRP管对核心混凝土的约束作用进行了探讨。研究结果表明,试验值、承载力模型、数值模拟分析结果吻合良好,验证了理论计算模型与有限元模型的可靠性。在此基础上,扩大了参数的范围和种类,利用有限元分析了各种参数对CFRP管约束混凝土柱的影响规律。CFRP管约束混凝土柱轴压承载力随着约束效应系数、配箍率的增大而增大,随着长细比的提高而减小。CFRP管的约束作用能够有效提高构件的承载力和延性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李斌
周薇
关键词:  CFRP管  组合结构  轴压性能  有限元分析    
Abstract: In this work, six CFRP tube confined concrete columns were designed and fabricated with slenderness ratio, confinement effect coefficient and stirrup ratio as parameters, and the axial compression mechanical properties were tested. The experimental results show that the axial compressive mechanical properties of CFRP tube confined concrete columns are closely related to slenderness ratio, confinement effect coefficient and stirrup ratio, and the influence intensity from large to small is as follow: confinement effect coefficient, stirrup ratio and slenderness ratio. On the basis of experimental study, the axial compression performance of concrete columns confined by CFRP tubes was numerically simulated and analyzed by ABAQUS nonlinear finite element software, and the constraint mechanism of CFRP tubes on concrete columns and the constraint effect of CFRP tubes on core concrete were discussed. The research results show that the test values, bearing capacity model and numerical simu-lation analysis results are in good agreement, which verifies the reliability of the theoretical calculation model and the finite element model. On this basis, the range and types of parameters are expanded, and the influence law of various parameters on CFRP tube confined concrete colu-mns is analyzed by finite element method. The axial compressive bearing capacity of CFRP tube confined concrete column increases with the increase of confinement effect coefficient and stirrup ratio, and decreases with the increase of slenderness ratio. The confinement effect of CFRP tube can effectively improve the bearing capacity and ductility of members.
Key words:  CFRP tube    combination structure    axial compression performance    finite element analysis
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU398.9  
基金资助: 国家自然科学基金项目(51068021)
通讯作者:  17855831046@163.com   
作者简介:  李斌,内蒙古科技大学土木工程学院教授、硕士研究生导师。1983年西安建筑科技大学建筑工程系工业与民用建筑专业本科毕业,1988年西安建筑科技大学建筑工程系结构工程专业硕士毕业后到内蒙古科技大学工作至今,2005年西安建筑科技大学防震减灾与防护工程专业博士毕业。目前主要从事钢与混凝土组合结构、在役结构可靠性及剩余寿命等方面的研究工作。发表论文60余篇。
引用本文:    
李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
LI Bin, ZHOU Wei. Experimental and Finite Element Analysis on Axial Compression Performance of Concrete Columns Confined with CFRP Tubes. Materials Reports, 2022, 36(Z1): 22040146-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22040146
1 史庆轩, 侯炜, 张兴虎, 等. 建筑结构学报, 2009, 30(S2), 109.
2 周文峰, 鲁瑛. 四川建筑科学研究, 2007(3), 144.
3 史庆轩, 董磊, 杨坤. 工程抗震与加固改造, 2006(6), 20.
4 孙文彬. 中外公路, 2010, 30(4), 265.
5 罗俊威. 第十七届全国现代结构工程学术研讨会,天津, 2017, pp. 1234.
6 陶忠, 于清, 韩林海, 等. 建筑结构学报, 2004(6), 75.
7 任宏伟, 严珊. 河南理工大学学报(自然科学版), 2021, 40(6), 157.
8 Fardis, Khalili. Aci Journal Proceedings, 1981, 78(6),440.
9 Richart F E. University of Illinois, Engineering Experimental Station, Bulletin, 1928,26(12), 2971509.
10 Miyauchi K, Nishibayashi S, Inoue S. Japan Concrete Institute, 1997.
11 Toutanji H A. Aci Materials Journal, 1999, 96(3), 397.
12 Mirmiran A, Singhvi A, Monti G. Journal of Composites for Construction, 1999, 3(1), 62.
13 Xiao Y, Wu T H. Journal of Materials in Civil Engineering, 2000, 12(2), 139.
14 Huang Y, Ye L, Lam L, et al. Proceedings of International Symposium on Confined Concrete, 2004.
15 Saafi M, Toutanji H A, Li Z. ACI Structural Journal, 1999, 96(4), 500.
[1] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[2] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[3] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[4] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[5] 余坤, 文立伟, 宦华松, 唐鹏刚. 缝合增强复合材料帽型加筋壁板界面拉脱性能[J]. 材料导报, 2021, 35(24): 24189-24194.
[6] 李京军, 刘威亨, 牛建刚, 李明闯. 不同空心率的方形聚丙烯纤维轻骨料混凝土空心柱的轴压性能[J]. 材料导报, 2021, 35(22): 22057-22062.
[7] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[8] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[9] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[10] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[11] 李义强, 李智, 赵斌, 刘磊, 蓝群力, 张新天, 卞立波. 多孔质混凝土植被恢复组合结构与材料性能研究[J]. 材料导报, 2020, 34(Z1): 199-202.
[12] 任重, 黄兴元, 柳和生. 塑料微管气辅挤出成型实验与机理分析[J]. 材料导报, 2020, 34(20): 20193-20198.
[13] 蓝群力, 张新天, 卞立波, 赵斌, 夏宇, 曹玉海. 高陡岩石边坡植被恢复组合结构与材料性能研究[J]. 材料导报, 2019, 33(Z2): 143-146.
[14] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[15] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed