Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22030217-5    
  无机非金属及其复合材料 |
碳纤维增强复合材料对钢筋混凝土的加固作用
马帅1, 金珊珊1,2
1 北京建筑大学土木与交通工程学院,北京 100044
2 北京未来城市设计高精尖创新中心,北京 100044
Reinforcement Action of Carbon Fiber Reinforced Polymer on the Reinforced Concrete Structure
MA Shuai1, JIN Shanshan1,2
1 School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Beijing Future City Design High-tech Innovation Center, Beijing 100044, China
下载:  全 文 ( PDF ) ( 5186KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于自然灾害多发和服役时间长,建筑结构难免出现损伤。损伤后,构件整体的各方面性能会一定程度地降低,此时需要对构件进行修复加固以保证结构的正常使用和承载能力。碳纤维增强聚合物(CFRP)加固方法是一种新型加固技术,其研究日趋成熟。经碳纤维增强聚合物加固后的钢筋混凝土结构的力学性能和耐久性能都得到显著改善。随着CFRP应用领域拓宽和各国对环保的重视程度提高,其废料回收利用成为研究热点。目前回收CFRP废料的方法很多,回收产物的质量也有保证,将其应用于建筑领域,可产生极好的环境效益和经济效益。本文总结了利用碳纤维增强聚合物加固技术提高钢筋混凝土结构的抗压能力、抗拉能力、抗弯能力、抗剪能力、动态力学性能和耐久性的研究,分析了各种回收碳纤维增强聚合物废料的方法及优缺点,阐述了碳纤维增强聚合物废料应用于建筑行业的现状并提出了碳纤维增强聚合物材料未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马帅
金珊珊
关键词:  碳纤维增强聚合物  钢筋混凝土  结构加固  力学性能  回收利用  绿色环保    
Abstract: Due to frequent natural disasters and long service time, it is inevitable that the building structure will be damaged. After the damage, the overall performance of the component will suffer a certain degree of degradation. The construction needs to be repaired and reinforced to ensure normal use and bearing capacity. Carbon fiber reinforced polymer (CFRP) reinforcement method is a new reinforced concrete reinforcement technology, and its research is gradually maturing. The mechanical and durability properties of reinforced concrete structures reinforced with carbon fiber reinforced polymers, are significantly improved. With the broadening of applications and the increasing attention of countries to environmental protection in various countries, its waste recycling has become a research hotspot. At present, there are many ways to recycle CFRP waste and the quality of the recovered products is also guaranteed. Its application to the construction field has strong environmental and economic benefits. This paper summarizes the research on the compressive ability, tensile ability, bending resistance, shear resistance, dynamic mechanical properties and durability of reinforced concrete structure by using carbon fiber reinforced polymer reinforcement technology, analyzes the met-hods and advantages and disadvantages of various recycling carbon fiber reinforced polymer wastes, elaborates the current situation of carbon fiber reinforced polymer waste in the construction industry, and proposes the future research direction of carbon fiber reinforced polymer materials.
Key words:  carbon fiber reinforced polymer    reinforced concrete    structural reinforcement    mechanical property    recycle and reuse    environmental protection
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU599  
  TU375  
通讯作者:  jinshanshan@bucea.edu.cn   
作者简介:  马帅,北京建筑大学土木与交通工程学院学生,研究方向为城市道路与桥梁方向。
金珊珊,北京建筑大学副教授、硕士研究生导师。2012年毕业于美国田纳西大学,同年回国任教于北京建筑大学至今主要从事道路材料的开发与性能研究,主持科研项目4项,其中国家自然科学基金项目1项。
引用本文:    
马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
MA Shuai, JIN Shanshan. Reinforcement Action of Carbon Fiber Reinforced Polymer on the Reinforced Concrete Structure. Materials Reports, 2022, 36(Z1): 22030217-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22030217
1 胡炜杰,钟明建,杨营,等.材料导报,2021,35(Z2),627.
2 López F C G, Marco J B, Rodríguez V C. Construction and Building Materials, 2021, 309, 124967.
3 Xu T, Zhang S, Liu J, et al. Composite Structures, 2022, 279,114804.
4 Benmokrane B, Hassan M, Robert M, et al. Journal of Composites for Construction, 2020, 24(3),04020010.1.
5 Bahekar P V, Gadve S S. Construction & Building Materials, 2017, 156(dec.15),242.
6 Kimm M, Pico D, Gries T. Journal of Hazardous Materials, 2019, 390, 121797.
7 Bazli M, Heitzmann M, Hernandez B V. Construction and Building Materials,2021, 301,124335.
8 Song G L, Zhang C, Chen X, et al. Corrosion Communications, 2021, 1, 26.
9 Mechtcherine V, Michel A, Liebscher M, et al. Automation in Construction,2020, 110, 103002.
10 Ostrowski K A, Furtak K. Composite Structures, 2021, 276, 114522.
11 邢丽英,冯志海,包建文,等.复合材料学报, 2020,37(11),2700.
12 刘利锋.合成材料老化与应用, 2021,50(2),1602.
13 Hadigheh S A, Ke F, Fatemi H. Structures Elsevier, 2022, 35, 325.
14 Oliveux G, Dandy L O, Leeke G A. Progress in Materials Science, 2015, 72, 61.
15 邓朗妮,雷丽贞,谢宏,等.复合材料科学与工程,2022(1),62.
16 Guo S, He H, Liu C, et al. Composite Structures, 2021, 258, 113382.
17 杨港,闫亚坤,朱宇航,等.山东化工,2021,50(22),103.
18 李茜莎.混凝土与水泥制品,2019(12),74.
19 朱元林,刘礼华,黄盛彬,等.复合材料学报,2022(3),1.
20 钟金平,霍静思,李智.公路工程,2020,45(5),167.
21 刘桂荣,曲福来,赵顺波,等.建筑结构学报,2019,40(5),156.
22 Nahil M A, Williams P T. Journal of Analytical and Applied Pyrolysis, 2011, 91(1),67.
23 Yildirir E, Onwudili J A, Williams P T. The Journal of Supercritical Fluids, 2014, 92, 107.
24 Morin C, Loppinet-Serani A, Cansell F, et al. The Journal of Supercritical Fluids, 2012, 66, 232.
25 王庆利,顾威,赵颖华.土木工程学报,2005(10),48.
26 王作虎,申书洋,崔宇强,等.哈尔滨工业大学学报,2020,52(8),112.
27 Sun D, Xu Y, Wang P, et al. Composite Structures, 2021, 278, 114692.
28 Mostofinejad D, Moshiri N. Journal of Composites for Construction, 2014, 19(5),04014079.1.
29 潘景龙,王雨光,来文汇.工业建筑,2001(6),17.
30 Gao P, Sun D, Zhao Y, et al. Engineering Structures, 2021, 239, 112303.
31 张贵文,李俊杰,王秀丽.甘肃科学学报,2012,24(1),32.
32 郑康,陈力,方秦,等.高压物理学报,2017,31(6),794.
33 陈卓异,彭岚,李传习,等.复合材料学报,2022(3),1.
34 Kormanikova E, Zmindak M, Novak P, et al. Composite Structures, 2021, 275(5),114448.
35 Eleni T, Lees J M, Errasi G T. Journal of Composites for Construction, 2018, 22(5), 04018032.
36 Li W, Tang S, Huang Z, et al. Engineering Structures, 2020,218,110828.
37 Zhang H, Wu J, Jin F, et al. Composites Part B: Engineering, 2019, 161, 357.
38 Li X, Bai M Z, Li T, et al. Journal of Performance of Constructed Facilities, 2020, 34(2), 04020017.
39 黄俊豪,钱永久,杨华平,等.铁道科学与工程学报,2022(3),1.
40 Ahmed H Q, Jaf D K, Yaseen S A. Construction and Building Materials, 2020,231, 117185.
41 Chen C, Yang Y, Zhou Y, et al. Journal of Cleaner Production, 2020, 263, 121572.
42 Yang Z Y, Liu Y, Sun M H, et al. Journal of Highway & Transportation Research & Development, 2018, 12(4), 44.
43 Hamoutami J E, Oum E K M. Materials Today: Proceedings, 2021,45,7697.
44 Wang H, Chen H, Zhou Y, et al. Construction and Building Materials, 2019, 196, 233.
45 Wang P, Chen H, Zhou J, et al. Composite Structures, 2018, 198, 1.
46 李培.合成材料老化与应用,2021,50(6),72.
47 薛俊青,Lavorato D,聂尚杰,等.中国公路学报,2022(3),1.
48 庄宁,夏浩瑜,董洪汉,等.建筑材料学报,2022(3),1.
49 Wei A, Al-Ameri R, Koay Y C, et al. Composites Communications, 2021, 24(2), 100648.
50 Radhi M S, Hassan M S, Gorgis I N. Journal of Building Engineering, 2021, 43, 102611.
51 龚美琦,张春涛,王汝恒.重庆理工大学学报(自然科学),2021,35(3),106.
52 Zhao Q, Zhang D, Zhao X L, et al. Composites Science and Technology, 2021, 215,108961.
53 任慧韬,李杉,黄承逵.工程力学,2010,27(4),202.
54 王先伟,殷雨时,杨春亮.混凝土,2020(5),49.
55 彭晖,刘洋,付俊俊,等.湖南大学学报(自然科学版),2017,44(5),63.
56 Pimenta S, Pinho S T. Composite Structures, 2012, 94(12), 3669.
57 Giorgini L, Benelli T, Mazzocchetti L, et al. Polymer Composites, 2015, 36(6), 1084.
58 López F A, Rodríguez O, Alguacil F J, et al. Journal of Analytical and Applied Pyrolysis, 2013, 104, 67.
59 Oliveux G, Dandy L O, Leeke G A. Progress in Materials Science, 2015, 72, 61.
60 Onwudili J A, Yildirir E, Williams P T. Waste and Biomass Valorization, 2013, 4(1), 87.
61 惠林海,张璐,李华,等.工程塑料应用,2020,48(8),149.
62 Liu W, Huang H, Zhu L, et al. Composites Part B: Engineering, 2021, 215, 108808.
63 Mastali M, Dalvand A, Sattarifard A R . Composites Part B Engineering, 2017, 112, 74.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[6] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[7] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[8] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[9] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[10] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[11] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[12] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[13] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[14] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[15] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed