Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21120147-5    
  金属与金属基复合材料 |
铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究
曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣
中国兵器科学研究院宁波分院,浙江 宁波 315103
Research on Hot Deformation Behavior of As-cast Mg-2Y-0.8Mn-0.6Ca-0.5Zn Magnesium Alloy
CAO Zhaoxun, WANG Jun, LIU Chen, HAN Jungang, WANG Yinyang, ZHONG Liang, WANG Rong, XU Yongdong, ZHU Xiurong
Ningbo Branch of Chinese Academy of Ordnance, Ningbo 315103, Zhejiang, China
下载:  全 文 ( PDF ) ( 12207KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 用Gleeble3500热模拟试验机对铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金进行热压缩变形试验,热变形温度和应变速率分别为375~450 ℃和0.001~5 s-1,利用试验数据绘制了真应力-应变曲线,并构建了双曲线正弦函数的本构方程和热加工图,同时分析了不同热变形温度和应变速率下材料的微观组织变化。铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金的热压缩变形激活能Q=230.32 kJ/mol,应力指数n=4.348,预测理想热变形温度和应变速率区域分别为410~450 ℃、0.03~0.25 s-1,该变区域功率耗散系数为30%~38%。热加工图中热变形稳定区域再结晶晶粒分布均匀,流变失稳区热变形再结晶晶粒分布不均匀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹召勋
王军
刘辰
韩俊刚
王荫洋
钟亮
王荣
徐永东
朱秀荣
关键词:  铸态镁合金  热变形  热加工图  显微组织    
Abstract: Gleeble3500 thermal simulation testing machine was used to conduct hot compression deformation test on as-cast Mg-2Y-0.8Mn-0.6Ca-0.5Zn magnesium alloy. The hot deformation temperature and strain rate were 375—450 ℃ and 0.001—5 s-1respectively.The true stress-strain curve was drawn by using the test data. And the constitutive equation and thermal processing diagram of the hyperbolic sine function were constructed. At the same time, the microstructure changes of the materials after different thermal deformation temperatures and strain rates were analyzed.The activation energy and the stress index of hot compression deformation of the as-cast Mg-2Y-0.8Mn-0.6Ca-0.5Zn magnesium alloy were Q=230.32 kJ/mol and n=4.348 respectively. The predicted ideal thermal deformation temperature and strain rate region of as-cast Mg-2Y-0.8Mn-0.6Ca-0.5Zn magnesium alloy are respectively 410—450 ℃ and 0.03—0.25 s-1, and the power dissipation coefficient of this variable region is 30%—38%. In the thermal processing diagram, the distribution of recrystallized grains in the thermal deformation stable region is relatively uniform, and the distribution of thermal deformation recrystallized grains in the rheological instability region is uneven.
Key words:  as-cast magnesium alloy    thermal deformation    thermal processing map    microstructure
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG146.2  
基金资助: 宁波市科技创新2025重大专项项目(2019B10103)
通讯作者:  2238789098@qq.com   
作者简介:  曹召勋,2016年7月、2019年6月分别于中北大学和内蒙金属材料研究所获得工学学士学位和硕士学位。现为中国兵器科学研究院宁波分院助理研究员,目前主要研究领域为反应材料和轻质金属材料制备加工。
王军,博士,中国兵器科学研究院宁波分院研究员。主要从事反应材料、轻合金材料、复合材料以及相关工艺技术研究,获国防科技进步二等奖1项,发表论文30余篇,授权专利12项。
引用本文:    
曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
CAO Zhaoxun, WANG Jun, LIU Chen, HAN Jungang, WANG Yinyang, ZHONG Liang, WANG Rong, XU Yongdong, ZHU Xiurong. Research on Hot Deformation Behavior of As-cast Mg-2Y-0.8Mn-0.6Ca-0.5Zn Magnesium Alloy. Materials Reports, 2022, 36(Z1): 21120147-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21120147
1 Ren L B, Quan G F, Boehlert C J, et al. Metallurgical and Materials Transactions A, 2018, 49(8), 3692.
2 Mordike B, Ebert T. Materials Science and Engineering A, 2001, 302, 37.
3 Li H, Wen J, He J, et al. Advanced Engineering Materials, 2020, 22, 2000213.
4 Zheng Y F, Gua X N, Witte F. Materials Science and Engineering R, 2014, 77, 1.
5 Echeverry-Rendon M, Allain J, Robledo S M, et al. Materials Science and Engineering C, 2019, 102, 150.
6 Agnew S R, Nie J F. Scripta Materialia, 2010, 63, 671.
7 Nie J F. Metallurgical and Materials Transactions A, 2012, 43A, 3891.
8 杨柳,官英平,段永川,等.稀有金属材料与程, 2020, 49(5),1715.
9 刘崇亮,权高峰,周明扬,等. 稀有金属材料与工程,2020,49(8),2591.
10 姜炳春,卢立伟,文泽军,等. 材料热处理报,2020,41(9),147.
11 许晨阳, 兰昊天, 朱江坡,等. 有色金属工程, 2020(9),14.
12 Ravichandran N,Prasad Y. Journal of Materials Science , 1992,156(2),195.
13 曹召勋,王军,徐永东,等.兵器材料科学与工程, 2021, 44(1),88.
14 Prasad Y, Rao K P, Sasidhara S . Hot working guide: a compendium of processing maps, ASM International, US, 2015, pp. 310.
15 Rao K P, Dharmendra C, Prasad Y, et al. In: Magnesium Technology 2018,Phoenix, AZ, United states, 2018, pp. 289.
16 Баренблатт Г И, Козырев Ю И, Малинин Н И, et al. Доклады Академии наук, 1966,166(4),813.
[1] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[2] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[3] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[4] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[5] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[6] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[7] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[8] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[9] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[10] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[11] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[12] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[13] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[14] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[15] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed