Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21100138-9    
  金属与金属基复合材料 |
电渣重熔新技术的研究现状及发展趋势
彭龙生1, 刘春泉2, 周浩3, 林英华3
1 湖南力方轧辊有限公司,湖南 衡阳 421681
2 湖南工学院材料科学与工程学院,湖南 衡阳 421002
3 南华大学机械工程学院,湖南 衡阳 421001
Research Status and Development Trend of New Technology of Electroslag Remelting
PENG Longsheng1, LIU Chunquan2, ZHOU Hao3, LIN Yinghua3
1 Hunan Lifang Roll Co., Ltd., Hengyang 421681, Hunan, China
2 School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002,Hunan, China
3 School of Mechanical Engineering, University of South School, Hengyang 421001, Hunan, China
下载:  全 文 ( PDF ) ( 12367KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 1940年美国霍普金斯获得了“Carol电铸锭”美国专利,电渣重熔技术被首次提出但未得到推广。1952年前苏联梅多瓦尔和巴顿两位科学家在实验室试制备了第一个不锈钢电渣锭。1958年,在乌克兰东南部城市扎波罗热第聂伯特钢厂建成了0.5 t P909型电渣炉。1959年—1960年建成了世界上第一个电渣重熔车间,开启了电渣重熔技术工业化时代。英国是最早从事电渣重熔技术研究的西方国家,随后各国冶金工业者纷纷开始研制多种新型电渣炉。奥地利INTECO公司开发了快速电渣技术(ESRR),该技术实现了快速和连续化操作,但这种快速电渣重熔技术存在的主要问题是电结晶器寿命太短,影响了其市场推广。为了满足多种不同断面且钢锭细长的需求,INTECO设计了一种可抽拉式底水箱、电极交换、滑动接触的平行双线母排、无需大电流软连接理念的抽锭试电渣重熔炉。德国VSG公司建成了世界上第一台加压电渣炉,工作压力为4.2 MPa,可生产直径为1 000 mm、质量达14.5 t的高氮钢锭,主要用于大型生产发电机护环钢。进入21世纪后,发达国家新建的电渣炉普遍采用保护气氛方式,德国还研究并设计制造了2台20 t的真空电渣炉分别在德国和日本得到工业应用。
我国的电渣冶金技术起步也比较早,1958年我国冶金工作者开始电渣重熔技术的研究。1960年,双支臂抽锭式电渣重熔炉在重庆特殊钢厂成功建造。1964年在重庆召开第二届全国电渣冶金会议,这标志着着我国电渣冶金技术进入大规模研究开发和推广应用阶段。在过去的近60年中,我国冶金工作者在电渣冶金领域发现和发明了许多自己独特的理论和技术。21世纪以来,我国开发了一系列电渣重熔新技术,主要包括熔速控制的保护气氛电渣炉、真空电渣炉、加压电渣重熔设备及高氮钢制备技术、电渣连铸技术、电渣重熔超大扁锭技术、电渣重熔空心钢锭技术、导电结晶器技术以及电渣液态浇注技术等,使我国电渣重熔技术始终保持国际先进行列。
本文简要回顾了电渣重熔工业生产的发展历史,重点对近年来的电渣冶金新技术进行了介绍和评价,包括电渣重熔技术、保护气氛电渣重熔技术、导电结晶器技术、加压电渣重熔、真空电渣重熔技术、特厚板坯电渣重熔技术、空心钢锭电渣重熔技术、大型钢锭电渣重熔技术、绿色环保型电渣重熔新渣系开发。在新的发展阶段,电渣冶金技术向高效、节能、环保和更高质量方向发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭龙生
刘春泉
周浩
林英华
关键词:  电渣冶金技术  保护气氛控制  导电结晶器  发展    
Abstract: In 1940, Hopkins of the United States obtained the US patent for "Carol Electroforming Ingot", and the electroslag remelting technology was first proposed but not promoted. In 1952, two scientists, Medoval and Patton, in the Soviet Union, trial-produced the first stainless steel electroslag ingot in the laboratory. In 1958, a 0.5 t P909 electroslag furnace was built in the Dnepartite Steel Plant in Zaporozhye, a city in southeas-tern Ukraine. From 1959 to 1960, the world's first electroslag remelting workshop had been built, opening the era of industrialization of electroslag remelting technology. Britain was the first Western country to engage in the research of electroslag remelting technology, and then metallurgical industries from various countries began to develop a variety of new electroslag furnaces. Austria's INTECO company developed the rapid electroslag technology ESRR, which realizes rapid and continuous operation, but the main problem of this rapid electroslag remelting is that the life of the electro-mold is too short, which affects its market promotion. In order to meet the needs of a variety of different sections and slender steel ingots, INTECO has designed an electroslag remelting furnace with drawable bottom water tank, electrode exchange, parallel two-wire busbar with sliding contact and the concept of soft connection without high current. The German VSG company built the world's first pressurized slag furnace with a working pressure of 4.2 MPa, which can produce high-nitrogen steel ingots with a diameter of 1000 mm and a weight of 14.5 tons, which is mainly used for large-scale production of generator guard ring steel. In the 21st century, the newly-built electroslag furnaces in developed countries gene-rally adopt the protective atmosphere method. Germany has also researched, designed and manufactured two 20 t vacuum electroslag furnaces, which have been industrially applied in Germany and Japan respectively.
China's Electroslag Metallurgy Technology started relatively early. In 1958, Chinese metallurgical workers began the research of electroslag remelting technology. In 1960, the double arm electroslag remelting furnace was successfully built in Chongqing special steel plant. The second national Electroslag Metallurgy conference was held in Chongqing in 1964, which marked that China's Electroslag Metallurgy Technology entered the stage of large-scale research, development, popularization and application. In the past 60 years, Chinese metallurgical workers have found and invented many unique theories and technologies in the field of Electroslag Metallurgy. Since the 21st century, China has developed a series of new electroslag remelting technologies, mainly including protective atmosphere electroslag furnace, vacuum electroslag furnace, pressurized electroslag remelting equipment and high nitrogen steel preparation technology, electroslag continuous casting technology, electroslag remelting super flat ingot technology, electroslag remelting hollow ingot technology, conductive mold technology and electroslag liquid pouring technology, so that China's electroslag remelting technology has always maintained the international advanced ranks.
A brief review of the development history of electroslag remelting industrial production is given, focusing on the introduction and evaluation of new electroslag metallurgical technologies in recent years, including electroslag remelting technology, protective atmosphere electroslag remelting technology, conductive crystallizer technology, and piezoelectric slag remelting, vacuum electroslag remelting technology, extra-thick slab electroslag remelting technology, hollow steel ingot electroslag remelting technology, large steel ingot electroslag remelting technology, and green environmental protection type electroslag remelting new slag system development . In the new stage of development, electroslag metallurgy technology is developing in the direction of high efficiency, energy saving, environmental protection and higher quality.
Key words:  electroslag metallurgy technology    protective atmosphere control    conductive crystallizer    development
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TF142  
通讯作者:  lflslfls@163.com   
作者简介:  彭龙生,工程师,现任湖南力方轧辊有限公司董事长兼技术总监,湖南省高耐磨合金材料先进制造工程技术研究中心主任,已获发明专利5项,实用新型专利12项。一直从事高性能轧辊开发等方面的研究,本科学历,目前为高级工程师。
引用本文:    
彭龙生, 刘春泉, 周浩, 林英华. 电渣重熔新技术的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21100138-9.
PENG Longsheng, LIU Chunquan, ZHOU Hao, LIN Yinghua. Research Status and Development Trend of New Technology of Electroslag Remelting. Materials Reports, 2022, 36(Z1): 21100138-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21100138
1 陈旭. 电渣重熔空心钢锭过程的数学模拟和试验研究. 博士学位论文, 东北大学, 2016.
2 姜周华, 董艳伍, 李花兵, 等.中国冶金, 2011, 21(12), 1.
3 石骁. 电渣重熔大型IN718镍基合金铸锭凝固和偏析行为基础研究. 博士学位论文, 北京科技大学, 2020.
4 段朝生. 电渣重熔大型IN718镍基合金铸锭合金元素氧化控制的基础研究. 博士学位论文, 北京科技大学,2020.
5 刘昱. 真空电渣重熔制备超洁净双合金锭的基础研究. 博士学位论文, 武汉科技大学, 2019
6 Hopkins R K. US patent, US2191470, 1940.
7 丁家伟, 丁刚, 强颖怀. 材料与冶金学报, 2011,3(10),147.
8 Ren N, Li B K, Li L M, et al.Ironmaking & Steelmaking, 2018, 45(2), 125.
9 Wang F, Xiong Y, Li B, et al.Steel Research International, 2019, 90(4), 1800092.
10 Wang Q, Qi F S, Wang F, et al. International Journal of Precision Engineering and Manufacturing, 2015, 16(12), 2467.
11 陈希春, 付锐, 任昊,等.中国新技术新产品, 2011(10),1.
12 Choudhary M, Szekely J.Metallurgical and Materials Transactions B, 1980, 11(3),439.
13 Li X, Jiang Z, Geng X , et al.Applied Thermal Engineering, 2018, 147,736.
14 Cao Y, Dong Y, Jiang Z, et al.ISIJ International, 2021, 61(7), 2127.
15 Dong Y, Hou Z, Jiang Z , et al.Metallurgical & Materials Transactions B, 2017, 49(8),1.
16 Liu F B, Zang X M, Jiang Z H, et al. International Journal of Minerals Metallurgy and Materials, 2012, 19(4),303.
17 Dong Y W, Jiang Z H, et al. Steel Research International, 2013, 84(10),1011.
18 Polishko G, Stovpchenko G, Medovar L, et al.Ironmaking & Steelma-king, 2019, 46(8), 789.
19 Karimi-Sibaki E, Kharicha A, Wu M, et al. Applied Thermal Enginee-ring, 2018, 130,1062.
20 Rui F, Li F, Yin F, et al.Materials Science & Engineering A, 2015, 638, 152.
21 Li F L, Fu R, Feng D, et al. Rare Metal Materials and Engineering, 2016, 45(6),1437.
22 Qi Y F, Li J, Shi C B, et al. ISIJ International, 2018, 58(7),1275.
23 Dong Y, Jiang Z, Cao H, et al.ISIJ International, 2016, 56(8),1386.
24 彭龙生. 中国专利, CN201310642784.3, 2013.
25 李正邦.特殊钢, 2004(5),4.
26 Kubin M, Scheriau A, Knabl M, et al. In: Iron and Steel Technology Conference. Indianapolis, 2014, pp. 1405.
27 Shi C B, Zheng D L, Guo B S, et al. Metallurgical & Materials Transactions B, 2018, 49(6), 3390.
28 都影祁, 孙建林, 郑亚旭,等.锻压技术, 2015, 40(11),76.
29 Holzgruber W. Austrian patent, AT 406.457,1995.
30 Holzgruber W. BHM Berg-und Hüttenmännische Monatshefte, 2016, 161(1),2.
31 姜周华, 臧喜民, 张天彪, 等. 中国专利,CN200995269Y, 2007.
32 陈旭 刘福斌 姜周华,等.东北大学学报(自然科学版), 2015(36),805.
33 Holzgruber H, Holzgruber W, Scheriau A, et al. In, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, Nancy, 2011, pp. 57.
34 Alghisi D, Milano M, Pazienza L.Metallurgia Italiana,2005,97(1),21.
35 Paton B E, Medovar L B.Steel in Translation, 2008, 38(12), 1028.
36 Zang X M, Jiang Z H, Pan T Y.Journal of University of Science and Technology Beijing, 2007(4),302.
37 Pant P, Dahlmann P, Schlump W,et al. Techn Mitt Krupp Forschungsbericht, 1985, 43, 67.
38 刘景远, 徐成海, 李广田, 等.铸造, 2016, 65(1), 52.
39 姜周华, 陈旭, 耿鑫,等.2014年中国金属学会论文集, 2014.
40 姜周华, 刘福斌, 余强, 等.钢铁, 2015, 50(10),30.
41 刘喜海, 贾维国, 王君卿, 等. 2012年钢锭制造技术与管理研讨会论文集, 2012.
42 翟华平, 刘福斌, 王庆.现代冶金, 2019, 47(1),4.
[1] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[2] 骆吉源, 肖国庆, 丁冬海, 种小川, 任金翠. 二硼化锆粉体合成研究现状与展望[J]. 材料导报, 2021, 35(21): 21159-21168.
[3] 吴国荣, 陈旭辉. 汽车轮毂材料轻量化与造型设计研究[J]. 材料导报, 2021, 35(19): 19181-19185.
[4] 孙剑锋, 张红, 梁金生, 王菲, 段昕辉, 王亚平. 生态环境功能材料领域的研究进展及学科发展展望[J]. 材料导报, 2021, 35(13): 13075-13084.
[5] 杨登才, 贾彦, 刘自钦. 汽车及典型部件全生命周期减量化技术专利布局分析[J]. 材料导报, 2020, 34(Z2): 476-483.
[6] 张小艳, 孙元, 李慧, 陈振斌. 智能印迹聚合物研究进展及发展瓶颈[J]. 材料导报, 2020, 34(15): 15163-15173.
[7] 邓友生, 蔡梦真, 王一雄, 苏家琳, 孙雅妮. 可回收锚件机理与工程应用研究[J]. 材料导报, 2019, 33(Z2): 473-479.
[8] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[9] 冯秋元, 佟学文, 王俭, 王鼎春, 高颀. 低成本钛合金研究现状与发展趋势*[J]. CLDB, 2017, 31(9): 128-134.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed