Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21050235-9    
  无机非金属及其复合材料 |
NASICON结构Na3Zr2Si2PO12固体电解质研究进展
赵玉辉1, 张雅荣2, 吴勇民1, 朱蕾1, 郭俊3, 汤卫平1
1 上海空间电源研究所空间电源技术国家重点实验室,上海 200245
2 电子科技大学化工学院,成都 610054
3 陕西科技大学化学与化工学院,西安 710021
Research Progress of Na3Zr2Si2PO12 Solid Electrolyte with NASICON-structure
ZHAO Yuhui1, ZHANG Yarong2, WU Yongmin1, ZHU Lei1, GUO Jun3, TANG Weiping1
1 State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
2 Chemical Engineering Institute,University of Electronic Science and Technology of China,Chengdu 610054,China
3 College of Chemistry and Chemical Engineering,Shaanxi University of Science & Technology, Xi'an 710021,China
下载:  全 文 ( PDF ) ( 9697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 社会科技的进步促进了电池储能技术的快速发展,生活中各色各样的电子元器件对储能电池的要求越来越高,研发出能量密度高、安全性高的储能材料是当下最紧迫的任务。但是,目前的二次电池多采用有机电解液,而有机电解液存在容易发生漏液、侵蚀电极、在过高温度下可能发生爆炸等问题。使用固态电解质,发展全固态电池,不仅有利于产品的微型化、形状多样化,还可以避免使用液态电解质会出现的问题,从而极大地减少安全隐患。NASICON(Na+ super ionic conductor)结构的Na3Zr2Si2PO12(NZSP)是目前最有前景的固态电解质材料之一,具有各向同性、不与Na反应、电导率高、分解电压高等优点。本文从NZSP晶体结构与离子扩散机理、合成方法、离子掺杂改性、NZSP固态电解质/电极界面修饰四个方面综述了NASICON结构Na3Zr2Si2PO12固体电解质近些年的研究进展,总结了Na3Zr2Si2PO12固体电解质在发展中遇到的困难与挑战,并提供了相应的解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵玉辉
张雅荣
吴勇民
朱蕾
郭俊
汤卫平
关键词:  电解质材料  离子掺杂  Na3Zr2Si2PO12  NASICON结构    
Abstract: The progress of social science and technology has promoted the rapid development of battery energy storage technology. The requirements of various electronic components in life for energy storage batteries are also increasing. It is the most urgent task to develop energy storage materials with high energy density and high safety. However, the current secondary batteries mostly use organic electrolyte, which is prone to leakage and erosion of electrodes, and may explode at high temperature. Using solid electrolyte to develop all-solid-state batteries is not only beneficial to the miniaturization and diversification of products, but also can avoid the problems of liquid electrolyte and greatly reduce the security risks. Na3Zr2Si2PO12 ( NZSP ) of NASICON (Na+ super ionic conductor)-structure is one of the most promising solid electrolyte materials at pre-sent, which has the advantages of isotropic, non-reaction with Na, high conductivity and high decomposition voltage.In this paper, the research progress of Na3Zr2Si2PO12 solid electrolyte with NASICON-structure in recent years is reviewed from the four aspects of NZSP crystal structure and ion diffusion mechanism, synthesis method, ion doping modification and NZSP solid electrolyte/electrode interface modification. Finally, difficulties and challenges encountered in the development of Na3Zr2Si2PO12 solid electrolyte are summarized, with the solution direction provided.
Key words:  electrolyte material    ion doping    Na3Zr2Si2PO12    NASICON (Na+ super ionic conductor)-structure
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TM911  
通讯作者:  Tangwp@sina.cn   
作者简介:  赵玉辉,2019年6月毕业于哈尔滨工业大学,获得工学学士学位。现为上海空间电源研究所空间电源技术国家重点实验室硕士研究生,目前主要研究领域为NASICON型无机固态电解质。
汤卫平,工学博士,研究员,分别于1983年、1986年获得陕西科技大学硅酸盐材料专业学士、硕士学位,1995年获得日本冈山大学精密应用化学博士学位。发表专著4部,论文160余篇,申请专利50余项,先后获得日本省级部级奖项及中国教育部留学生创业春晖杯奖项,现任中国航天科技集团有限公司上海航天局上海空间电源研究所副总工程师,空间电源技术实验室空间环境储能基础理论与过程控制研究方向学术带头人,国家第六批“千人计划”及上海市首批“千人计划”特聘专家。
引用本文:    
赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
ZHAO Yuhui, ZHANG Yarong, WU Yongmin, ZHU Lei, GUO Jun, TANG Weiping. Research Progress of Na3Zr2Si2PO12 Solid Electrolyte with NASICON-structure. Materials Reports, 2022, 36(Z1): 21050235-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21050235
1 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058), 928.
2 Takada K. Journal of Power Sources, 2018, 394, 74.
3 Armand M, Tarascon J M. Nature, 2008, 451(7179), 652.
4 Tarascon J M, Armand M. Nature, 2001, 414(6861), 359.
5 Zheng F, Kotobuki M, Song S, et al. Journal of Power Sources, 2018, 389, 198.
6 Chen C H, Xie S, Sperling E, et al. Solid State Ionics,2004, 167 (3), 263.
7 Goodenough J B, Hong Y H, Kafalas J A. Materials Research Bulletin, 1976, 11, 203.
8 Baur W H, Dygas J R, Whitmore D H, et al. Solid State Ionics, 1986, 18(1), 935.
9 Boilot J P, Collin G, Colombana P. Materials Research Bulletin, 1987,22(5), 669.
10 Hee-Bog K, Cho N H. Journal of Materials Science, 1999, 34 (20), 5005.
11 Wang L, Pan L, Sun J, et al. Journal of Materials Science, 2001, 40(7),1717.
12 Wang L, Kumar R V. Solid State Ionics, 2003, 158(3), 309.
13 Pasierb P, Gajerski R, Komornicki S. et al. Journal of Thermal Analysis and Calorimetry, 2004, 77, 105.
14 Obata K, Matsushima S. Sensors and Actuators B: Chemical, 2009,139, 435.
15 Miyachi Y, Sakai G, Himanoe K, et al. Sensors & Actuators: B. Chemical,2004,108(1), 364.
16 Miyachi Y, Sakai G, Himanoe K, et al. Sensors & Actuators: B. Chemical,2003,93(1), 250.
17 Horwat D, Pierson J F, Billard A. Thin Solid Films,2007,516(10), 3081.
18 Horwat D, Pierson J F, Billard A. Surface & Coatings Technology,2007, 201(16), 7013.
19 Samiee M, Radhakrishnan B, Rice Z, et al. Journal of Power Sources,2017,347, 229.
20 Barre M, Crosnier-Lopez M P, Berre F L, et al. Journal of Solid State Chemistry 2007, 180, 1011.
21 Bui K M, An D V, Susumu O, et al. Physical Chemistry Chemical Phy-sics, 2016,18(39), 27226.
22 Henkelman G, Jónsson H. Chemical Physics, 2000,113, 9978.
23 Supriya R, Kumar P P. Physical Chemistry Chemical Physics: PCCP,2013,15(14), 4965.
24 Narayanan S, Reid S, Butler S,et al. Solid State Ionics, 2019,331,162.
25 Ruan Y, Guo F, Jingjing L, et al. Ceramics International, 2018,44(18), 2226.
26 Ruan Y L, Song S D, Liu J J, et al. Ceramics International,2017,43(10),7810.
27 Cao X G, Zhang X H, Tao T, et al. Ceramics International, 2020, 46(6), 8405.
28 Dan C, Fa L, Lu G, et al. Journal of the European Ceramic Society, 2018,38(13), 4440.
29 Shengnan H, Youlong X, Xiaoning M, et al. ChemElectro Chem,2020,7(9), 2087.
30 Dziubaniuk M, Trzęsiec M, Pasierb P, et al. Solid State Ionics,2012,225, 324.
31 Cheng M, Tao Q, Jie Z, et al. Nanotechnology,2020, 31(42), 1361.
32 Schmid H, Jonghe L C, Cameron C. Solid State Ionics, 1982, 6(1), 57.
33 Komiya R, Hayashi A, Morimoto H, et al. Solid State Ionics, 2001, 140 (1/2), 83.
34 Morimoto H, Hirukawa M, Matsumoto A, et al. Electrochemistry, 2014, 82 (10), 870.
35 Shao Y J, Zhong G M, Lu Y X,et al. Energy Storage Materials,2019,23, 514.
36 Róg S, Koziński A, Kozlowska R. Electrochimica Acta, 1983, 28, 43.
37 Ma Z, Xue H G, Guo S P. Journal of Materials Science, 2018, 53(6), 3927.
38 Alexey K, Ivanov S, Anatoly V, et al. Solid State Ionics, 2001,144(1), 133.
39 Sahir N, Qianli M, Frank T, Solid State Ionics, 2016, 302, 83.
40 Yoshinori N, Eiji K, Larisa S, et al. Electrochimica Acta,2013, 101, 59.
41 Lalère F, Leriche J B, Courty M, et al. Journal of Power Sources,2014,247,975
42 Billard A, Vernoux P. Topics in Catalysis, 2007, 44 (3), 369.
43 Hiromichi A, YoshiteruI T, Yoshihiko S. Sensors and Actuators B: Che-mical,2007, 126(2), 406
44 Piotr L, Anna S, Bogdan C, et al. Solid State Ionics,2015,271, 48.
45 Masataka M, Takeo H, Yasuhiro S, et al. Sensors & Actuators: B. Chemical,2009,139(2), 563.
46 Hirotaka T, Taro U, Kai K, et al. Electrochimica Acta,2015,155, 8.
47 Wei N, Long C, Yongchang L, et al. Chemical Engineering Journal, 2020, 384, 123233
48 Yao L, Jose A, Qiang Y, et al. Advanced Energy Materials, 2019, 6, 1205
49 Naqash S, Ma Q, Tietz F, et al. Solid State Ionics. 2017, 302, 83.
50 Derya Y H, Emel O. Journal of the Australian Ceramic Society, 2017, 53 (2), 545.
51 Kuriakose A K, Wheat T A, Ahmad A, et al. Journal of the Americal Ceramic Society, 1984, 67 (3),179.
52 Fuentes R O, Marques M B, Franco J I, et al. Thermochimica Acta. 1999,38 (6),631.
53 Kang H B, Cho N H, Formation P. Materals Science, 1999,34 (20),5005.
54 Boilot J P, Colomban P, Collin G. Solid State Ionics, 1986, 18,974.
55 Wang X, Zehua L, Yihua T, et al. Journal of Power Sources,2021, 481, 411.
56 Cheng Z W, Junjie G, Xiangwen G, et al. Cell Reports Physical Science,2021, 2(7), 2666.
57 Santosh K P, Ritobrata S, Gundugolanu V K.et al. The Journal of Physical Chemistry, 2020, 124, 1632.
58 Congcai H, Guanming Y, Wenhao Y, et al. Journal of Alloys and Compounds,2021,855(2), 501.
59 Paramjyot K J, Pandey O P, Singh K. Silicon, 2017,9 (3), 411.
60 Sahir N, Qianli M, Frank T, et al. Solid State Ionics,2017, 302, 83.
61 Sahir N, Frank T, Elena Y, et al. Solid State Ionics,2019, 336, 57.
62 Sadaoka Y, Matsuguchi M, Sakai Y, et al. Journal of Materials Science, 1989, 24 (4), 1299.
63 Skarmoutsos D, Nikolopoulos P, Tietz F, et al. Solid State Ionics,2004, 170 (3), 153.
64 Roy S, Kumar P P. Physical Chemistry Chemical Physics,2013,15(14), 4965.
65 Shimazu K, Yamamoto Y, Saito Y, et al. Solid State Ion, 1995, 79, 106.
66 Mojtaba S, Balachandran R, Zane R, et al. Journal of Power Sources,2017,347, 229.
67 Santosh K P, Ritobrata S, Gundugolanu V K, et al. American Chemical Society, 2020, 12417, 9161.
68 Energy E M. Energy Weekly News,2019, 9(28), 1205.
69 Adam G J, Gil C, Gregory T. et al. Ionics, 2015, 21 (11), 3031.
70 Samiee M, Balachandran R, Zane R, et al. Journal of Power Sources,2017,347, 229.
71 Naqash S, Frank T, Olivier G. Solid State Ionics,2018, 319, 13.
72 Dan C, Fa L, Wancheng Z, et al. Journal of Alloys and Compounds,2018,757, 348.
73 Zahra K. Electrochimica Acta,2016, 196, 337.
74 Heetaek P, Minseok K, Yooncheol P, et al. Journal of Power Sources,2018,399, 329.
75 Sahir N, Frank T, Elena Y, et al. Solid State Ionics, 2019, 336, 57.
76 Kousuke N, Kenji S, Naoto T, et al. Journal of the American Ceramic Society,2018,101(3), 1255.
77 Dan C, Fa L, Lu G, et al. Journal of Electronic Materials,2017, 46(11), 6367.
78 Cao X G, Xiaohua Z, Tao T, et al. Ceramics International, 2020, 46(6), 8405.
79 Jiayi Y, Zhonghui G, Thimo F, et al. Journal of Materials Chemistry A, 2020,8, 7828.
80 Gao Z H, Jiayi Y, Haiyang Y. et al. Chemistry of Materials, 2020, 32(9), 3970.
81 Yu X W, Leigang X. Advanced Function Materials,2002,144, 712.
82 Lyu Y Q, Yu J, Wu J X, et al. Journal of Power Sources, 2019,416, 21.
[1] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[2] 陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
[3] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[4] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[5] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed