Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21050183-6    
  无机非金属及其复合材料 |
宽禁带半导体β-Ga2O3单晶制备工艺研究进展
闫时雨1,2, 纪文涛1,2, 谢克强1,2, 袁晓磊1,2
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 昆明理工大学冶金与能源工程学院,真空冶金国家工程实验室,昆明 650093
Research Progress on Preparation Technology of Wide-bandgap Semiconductor β-Ga2O3 Single Crystal
YAN Shiyu1,2, JI Wentao1,2, XIE Keqiang1,2, YUAN Xiaolei1,2
1 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 National Engineering Laboratory of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 4164KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ga2O3是一种宽禁带化合物半导体,因具有优异光电性能成为继SiC和GaN之后的第三代用于功率元件的宽禁带半导体,可广泛应用于航空航天、信息通讯、医疗卫生等领域。β-Ga2O3单晶的制备方法主要有焰熔法、直拉法、导模法、浮区法、垂直布里奇曼法、化学气相传输法等。β-Ga2O3在高温下易分解,这增加了制备大尺寸、高质量β-Ga2O3单晶的难度。本文在详细介绍β-Ga2O3单晶的制备方法,并在此基础上分析了各种方法的优缺点,总结了其在功率器件方面的应用,为β-Ga2O3单晶制备技术优化及拓展应用前景提供了一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫时雨
纪文涛
谢克强
袁晓磊
关键词:  β-Ga2O3  宽禁带半导体  单晶生长  制备方法    
Abstract: Ga2O3 material has become the third-generation wide-bandgap semiconductor for power components after SiC and GaN due to its excellent optoelectronic properties, and has broad application prospects in aerospace, information communication, medical and health and other fields. The preparation methods of β-Ga2O3 single crystal mainly include Verneuil method, Czochralski method, edge-defined film growth method, floating zone method, vertical Bridgeman method and chemical vapor transport method. β-Ga2O3 is easily decomposed at high temperature, which brings certain difficulties to the preparation of large-sized and high-quality β-Ga2O3 single crystals. In this paper, the preparation methods of β-Ga2O3 single crystal were introduced in detail, and the advantages and disadvantages of each method were analyzed. The application of β-Ga2O3 single crystal in power devices was summarized, and certain reference for optimizing its preparation process and expanding its application prospect was provided.
Key words:  β-Ga2O3    wide-bandgap semiconductor    single crystal growth    preparation method
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  O782  
基金资助: 国家自然科学基金(51764033)
通讯作者:  xkqzhh@sina.com   
作者简介:  闫时雨,2019年6月毕业于河北科技大学理工学院,获得工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,在谢克强教授的指导下进行研究。目前主要的研究领域为氧化镓真空碳热还原提镓工艺。
谢克强,昆明理工大学冶金与能源工程学院教授、博士研究生导师。1987年7月毕业于昆明理工大学(原昆明工学院)冶金系有色金属冶金专业,获得工学学士学位;1990年3月昆明理工大学(原昆明工学院)冶金系有色金属冶金专业硕士研究生毕业,获得工学硕士学位; 2003年9月考入昆明理工大学材料与冶金工程学院攻读博士学位,2006年10月获得工学博士学位。1990年至2003年在昆明有色冶金设计研究院(有限公司)工作,2006年至2009年在昆明理工大学材料与冶金工程学院工作,2009年至今在昆明理工大学冶金与能源工程学院工作。主要从事真空冶金、湿法冶金、硅冶金与硅材料等方面的研究工作。以第一作者或通讯作者发表论文多篇,包括Journal of Hazardous Materials, Journal of Cleaner Production, Journal of Environmental Management, Hydrometallurgy等。
引用本文:    
闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
YAN Shiyu, JI Wentao, XIE Keqiang, YUAN Xiaolei. Research Progress on Preparation Technology of Wide-bandgap Semiconductor β-Ga2O3 Single Crystal. Materials Reports, 2022, 36(Z1): 21050183-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21050183
1 Playford H Y, Hannon A C, Barney E R, et al. Chemistry, 2013 , 19(8), 2803.
2 Galazka Z. Semiconductor Science and Technology, 2018, 33(11), 113001.
3 Oishi T, Koga Y, Harada K, et al. Applied Physics Express. 2015, 8(3), 031101.
4 孙学耕, 张智群. 半导体技术, 2018, 43(4), 241.
5 Bartic M, Toyoda Y, Baban C I, et al. Japanese Journal of Applied Phy-sics, 2006, 45(6R), 5186.
6 Suzuki R, Nakagomi S, Kokubun Y, et al. Applied Physics Letters, 2009, 94(22), 222102.
7 Yao Y, Ishikawa Y, Sugawara Y. Journal of Applied Physics, 2019, 126(20), 205106.
8 Ghose S. Growth and characterization of wide bandgap semiconductor oxide thin films. Ph.D. Thesis, Texas State University, USA, 2017.
9 Stepanov S, Nikolaev V, Bougrov V, et al. Reviews On Advanced Mate-rials Science, 2016, 44, 63.
10 Pearton S J, Yang J C, Cary P H, et al. Applied Physics Reviews, 2018, 5(1), 011301.
11 Jang S, Jung S, Beers K, et al. Journal of Alloys and Compounds, 2018, 731, 118.
12 穆文祥. β-Ga2O3单晶的生长、加工及性能研究. 博士学位论文, 山东大学, 2018.
13 Mu W, Jia Z, Yin Y, et al. CrystEngComm, 2017, 19(34), 5122.
14 Higashiwaki M, Sasaki K, Kuramata A, et al. Physica Status Solidi (A), 2014, 211(1), 21.
15 Ohba E, Kobayashi T, Kado M, et al. Japanese Journal of Applied Phy-sics, 2016, 55(12), 1202BF.
16 Fu B, Jia Z T, Mu W X, et al. Journal of Semiconductors, 2019, 40(1), 011804.
17 Mohamed H F, Xia C, Sai Q, et al. Journal of Semiconductors, 2019, 40(1), 011801.
18 Müller G, Friedrich J. In:Encyclopedia of condensed matter physics, Elsevier, UK, 2005, pp. 262.
19 邱鹏. 稀土金属助熔剂法制备SiC单晶的物理化学基础研究. 硕士学位论文, 昆明理工大学, 2020.
20 Nassau K. Journal of Crystal Growth, 1972, 13,12.
21 Chase A O. Journal of the American Ceramic Society, 2010, 47(9), 470.
22 Lorenz M R, Woods J F, Gambino R J. Journal of Physics and Chemistry of Solids, 1967, 28(3), 403.
23 Harwig T, Wubs G J, Dirksen G J. Solid State Communications, 1976, 18(9), 1223.
24 Czochralski J. Zeitschrift für Physikalische Chemie, 1918, 92, 219.
25 Tomm Y, Reiche P, Klimm D, et al. Journal of Crystal Growth, 2000, 220(4), 510.
26 Galazka Z, Uecker R, Klimm D, et al. ECS Journal of Solid State Science and Technology, 2017, 6(2), Q3007.
27 Mu W X, Jia Z T, Yin Y R, et al. CrystengComm, 2019, 21(17), 2762.
28 Tang X, Liu B T, Yu Y, et al. Crystals, 2020, 11(1), 25.
29 Aida H, Nishiguchi K, Takeda H, et al. Japanese Journal of Applied Physics, 2008, 47(11R), 8506.
30 唐慧丽, 何诺天, 罗平, 等.人工晶体学报, 2017, 46(12), 232.
31 Kuramata A, Koshi K, Watanabe S, et al. Japanese Journal of Applied Physics, 2016, 55(12), 1202A2.
32 Tang H L, He N T, Zhang H, et al. CrystEngComm, 2020, 22(5), 924.
33 Fu B, Jian G Z, Mu W X, et al. Journal of Alloys and Compounds, 2022, 896, 162830.
34 Víllora E G, Shimamura K, Yoshikawa Y, et al. Journal of Crystal Growth, 2004, 270(3-4), 420.
35 Zhang J G, Li B, Xia C T, et al. Journal of Physics and Chemistry of So-lids, 2006, 67(12), 2448.
36 Oda H, Kimura N, Yasukawa D, et al. Physica Status Solidi(A), 2017, 214(3), 1600670.
37 Usui Y, Nakauchi D, Kawano N, et al. Journal of Physics and Chemistry of Solids, 2018, 117, 36.
38 吴庆辉, 唐慧丽, 苏良碧,等. 人工晶体学报, 2016, 45(6), 1440.
39 Mu W, Jia Z, Cittadino G, et al. Crystal Growth & Design, 2018, 18(5), 3037.
40 Peelaers H, Van de Walle C G. Physical Review B, 2016, 94(19), 195203.
41 Long X J, Niu W L, Wan L Y, et al. Crystals, 2021, 11(2), 135.
42 Cui H Y, Mohamed H F, Xia C T, et al. Journal of Alloys and Compounds, 2019, 788, 925.
43 Luchechko A, Vasyltsiv V, Kostyk L, et al. ECS Journal of Solid State Science and Technology, 2020, 9(4), 045008.
44 唐慧丽, 吴庆辉, 罗平, 等. 无机材料学报, 2017, 32(6), 621.
45 Wang B G, Look D, Farlow G. Journal of Physics D: Applied Physics, 2020, 53(44), 444001.
46 Zhang H, Tang H L, He N T, et al. Chinese Physics B, 2020, 29(8), 087201.
47 Yanagida T, Kawaguchi N. Japanese Journal of Applied Physics, 2019, 59(SC), SCCB20.
48 Hoshikawa K, Ohba E, Kobayashi T, et al. Journal of Crystal Growth, 2016, 447, 36.
49 Hoshikawa K, Kobayashi T, Matsuki Y, et al. Journal of Crystal Growth, 2020, 545, 125724.
50 Su J, Liu T, Liu J M , et al. Journal of Semiconductors, 2016, 37(10), 103004.
51 Juskowiak H, Pajaczkowska A. Journal of Materials Science, 1986, 21(10), 3430.
52 Pajaczkowska A, Juskowiak H. Journal of Materials Science, 1986, 21(10), 3435.
53 Pajaczkowska A, Juskowiak H. Journal of Crystal Growth, 1986, 79(1-3), 421.
54 Juskowiak H, Pajaczkowska A. Materials Research Bulletin, 1988, 23(7), 1071.
55 Higashiwaki M, Sasaki K, Murakami H, et al. Semiconductor Science and Technology, 2016, 31(3), 034001.
56 Mastro M A, Kuramata A, Calkins J, et al. ECS Journal of Solid State Science and Technology, 2017, 6(5), 356.
57 Sasaki K, Higashiwaki M, Kuramata A, et al. IEEE Electron Device Letters, 2013, 34(4), 493.
58 张晋, 胡壮壮, 穆文祥, 等. 人工晶体学报, 2020, 49(11), 2194.
59 Ke Z, Abhishek V, Uttam S. IEEE Electron Device Letters, 2018, 39(9), 1385.
60 Hu Z Y, Nomoto K, Li W S, et al. IEEE Electron Device Letters, 2018, 39(6), 869.
61 Yang C, Liang H W, Zhang Z Z, et al. RSC Advances, 2018, 8(12), 6341.
62 Yanagida T, Okada G, Kato T, et al. Applied Physics Express, 2016, 9(4), 042601.
[1] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[2] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[3] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[4] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[5] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[6] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[7] 王浩, 宗楠, 陈中正, 薄勇, 彭钦军. 富勒烯制备与提纯方法研究进展[J]. 材料导报, 2021, 35(Z1): 71-77.
[8] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[9] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[10] 申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
[11] 朱界, 张方舟, 谢有菊, 贾林涛, 王梦千, 李爱军. MAX相Ti3SiC2高导电涂层的研究进展[J]. 材料导报, 2021, 35(23): 23025-23032.
[12] 张仁耀, 郭俊梅, 闻明, 管伟明. 贵金属钌的制备、性能及应用研究进展[J]. 材料导报, 2021, 35(21): 21243-21248.
[13] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[14] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[15] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed