Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21010111-8    https://doi.org/10.11896/cldb.21010111
  高分子与聚合物基复合材料 |
PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述
张栋凯, 吴凯*, 刘刚*, 孙军
西安交通大学金属材料强度国家重点实验室,西安 710049
Deformation and Fracture Behavior of Metal Films on Polydimethylsiloxane (PDMS) and Its Application in Strain Sensing: a Review
ZHANG Dongkai, WU Kai*, LIU Gang*, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 5144KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,柔性电子技术突破了传统电子产品无法变形的局限,以其独特的柔性在电子、能源、医疗、信息、国防等多个领域具有广泛的应用。作为柔性电子器件基本的结构单元,金属薄膜/柔性基体体系在服役过程中难免会受到拉、压、弯和扭等变形的作用。面对严苛的服役条件,金属薄膜/柔性基体体系如何保持其结构的稳定性对材料制备、界面设计、结构设计均提出了更高的挑战。
作为最常使用的基体材料,聚二甲基硅氧烷(PDMS)的弹性模量较低,变形过程中对金属薄膜的约束作用较弱,且膜基界面结合强度也较低,导致PDMS基体上金属薄膜的延展性较差,甚至在沉积态金属薄膜即发生断裂,这一直以来都是制约柔性电子器件发展的关键问题。近年来研究人员针对PDMS基体上金属薄膜的变形和断裂行为开展了较为系统的研究,试图从薄膜优化制备、增强膜基界面结合、薄膜/基体结构设计等方面提高其延展性。
在金属薄膜优化制备方面,通过调控制备工艺以改善薄膜应力状态,压缩应力有助于提高体系的延展性;在膜基界面改性方面,通过紫外-臭氧处理、氧等离子体处理、添加界面结合层以改善金属薄膜与PDMS基体之间的界面结合性能,提高体系延展性。然而,仅通过改变制备工艺和界面特性来提高体系延展性的调控空间非常有限。鉴于此,研究人员通过薄膜/基体结构设计、引入褶皱/屈曲结构的方法,大幅提高了体系的延展性,为柔性电子器件的工程化应用提供了可能。此外,断裂是薄膜最常见的失效形式之一,显著影响金属薄膜/柔性基体的延展性,研究人员通常通过上述手段避免薄膜发生断裂,而如果可以合理控制金属薄膜的断裂行为并加以利用,则可实现其正面贡献。近来,通过对PDMS基体上金属薄膜断裂行为的有效调控,证实了含裂纹结构的金属薄膜在柔性应变传感领域的应用潜力。
本文归纳了PDMS基体上金属薄膜变形与断裂行为的研究进展,分别对薄膜优化制备、PDMS基体表面改性、界面过渡层设计以及薄膜褶皱/屈曲结构设计等提高体系延展性的方法进行介绍,总结了目前仍面临的问题并展望了其发展前景,为高性能柔性电子器件的优化制备与结构设计提供理论参考和应用指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张栋凯
吴凯
刘刚
孙军
关键词:  柔性电子  聚二甲基硅氧烷(PDMS)  金属薄膜  断裂  褶皱  应变传感    
Abstract: In recent years, flexible electronic technology has broken through the limitation of traditional electronic devices, which has been widely applied in the fields of electronics, energy, medical care, information technology, national defense, etc. As the basic structural unit of flexible electronic devices, metal film/compliant substrate systems inevitably suffer from various deformation in the practical application, such as tension, compression, bending and torsion. Thus, it is a big challenge to prepare the material systems, design the film/substrate interfaces and optimize the structures for maintaining the structural stability of metal film/compliant substrate systems.
Polydimethylsiloxane (PDMS) is often used as the substrate material for flexible electronics. However, the PDMS substrates cannot effectively suppress the strain localization of the metal films because of low elasticity modulus and poor adhesion. The as-deposited metal films may even fracture, restricting the development of flexible electronics. Recently, much effort has been devoted to the deformation and fracture behavior of metal films on PDMS substrates. Some strategies have been proposed to improve the stretchability, including optimizing the film preparation, enhancing the interface adhesion, and designing the geometries of the films and substrates.
For example,the stress state of metal films can be tuned by changing deposition parameters. A compressive stress in metal films is beneficial to the stretchability. The stretchability can also be improved by interfacial adhesion strategies, such as ultraviolet-ozone (UVO) treatment, oxygen plasma treatment, and adding adhesion interlayers. However, the improvement of the stretchability is considerably limited by optimizing film preparation and enhancing interface adhesion. Recent studies have demonstrated that the stretchability would be significantly improved by introducing the wrinkling/buckling structures in films or substrates, which provides a possibility for the practical application of flexible electronics. Additionally, as one of the most common failure modes of metal thin films, cracking will remarkably impair the stretchability, which usually should be avoided. On the contrary, it is helpful to achieve some functionalities by controlling the fracture behavior of the metal films. For example, it has been demonstrated that the highly sensitive flexible strain sensors can be developed by manipulating the cracking behavior of metal thin films.
This review summarizes the research progress of deformation and fracture behavior of metal films on PDMS substrates, and introduces the strategies for improving the stretchability, including optimizing film preparation, modifying the PDMS surface, adding the adhesion interlayers and designing wrinkling/buckling structures. By analyzing the current challenges and future opportunities, this review is expected to provide the theoretical reference for the preparation of optimization and structural design of high-performance flexible electronic devices.
Key words:  flexible electronics    polydimethylsiloxane(PDMS)    metal films    fracture    wrinkle    strain sensing
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51621063;51801146;51625103);高等学校学科创新引智计划 (BP2018008)
通讯作者:  * msewukai@xjtu.edu.cn;lgsammer@xjtu.edu.cn   
作者简介:  张栋凯,2018年6月毕业于河南工业大学,获得工学学士学位。现为西安交通大学材料学院硕士研究生,在刘刚教授的指导下进行研究。目前主要研究领域为柔性基体上铜薄膜的疲劳与断裂。
吴凯,西安交通大学副教授、博士研究生导师。2010年7月在西安理工大学获得材料科学与工程专业学士学位,2016年3月在西安交通大学获得材料科学与工程专业博士学位,毕业后进入西安交通大学材料学院工作,2019年至2020年在卡尔斯鲁厄理工学院进行访问研究。研究工作主要围绕金属薄膜材料变形与断裂行为,在Advanced Materials、Nano Letters、Acta Materialia、Scripta Materialia等国内外学术期刊上发表论文60余篇,先后主持/参与多项国家自然科学基金项目。
刘刚,西安交通大学材料学院教授,金属材料强度国家重点实验室副主任。主要研究方向为金属材料的强韧化与变形断裂,先后入选国家杰出青年基金、教育部长江学者特聘教授和中组部万人计划科技创新领军人才。在Nature Materials、Acta Materialia等SCI源学术期刊发表论文230余篇,论文被SCI引用4 000余次。荣获2013年度国家技术发明二等奖1项(第五完成人)和2017年度国家自然科学二等奖1项(第二完成人)。
引用本文:    
张栋凯, 吴凯, 刘刚, 孙军. PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述[J]. 材料导报, 2022, 36(13): 21010111-8.
ZHANG Dongkai, WU Kai, LIU Gang, SUN Jun. Deformation and Fracture Behavior of Metal Films on Polydimethylsiloxane (PDMS) and Its Application in Strain Sensing: a Review. Materials Reports, 2022, 36(13): 21010111-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010111  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21010111
1 Lim Y W, Jin J, Bae B S. Advanced Materials, 2020, 32(35), 1907143.
2 Yang Y R, Gao W. Chemical Society Reviews, 2019, 48(6), 1465.
3 Zhou J, Gu Y D, Fei P, et al. Nano Letters, 2008, 8(9), 3035.
4 Gao W, Ota H, Kiriya D, et al. Accounts of Chemical Research, 2019, 52(3), 523.
5 Kamyshny A, Magdassi S. Chemical Society Reviews, 2019, 48(6), 1712.
6 Guo L, Ma M M, Zhang N, et al. Advanced Materials, 2014, 26(9), 1427.
7 Matsushita K, Hirata M, Suzuki T, et al. Frontiers in Neuroscience, 2018, 12, 511.
8 Tybrandt K, Khodagholy D, Dielacher B, et al. Advanced Materials, 2018, 30(15), 1706520.
9 Renz A F, Reichmuth A M, Stauffer F, et al. Journal of Neural Engineering, 2018, 15(6), 061001.
10 Frank J A, Antonini M J, Anikeeva P. Nature Biotechnology, 2019, 37(9), 1013.
11 Byun J, Lee Y, Yoon J, et al. Science Robotics, 2018, 3(18), 9020.
12 Yang J C, Mun J, Kwon S Y, et al. Advanced Materials, 2019, 31(48), 1904765.
13 Sekitani T, Nakajima H, Maeda H, et al. Nature Materials, 2009, 8(6), 494.
14 Liang J J, Li L, Niu X F, et al. Nature Photonics, 2013, 7(10), 817.
15 Larson C, Peele B, Li S, et al. Science, 2016, 351(6277), 1071.
16 Kang S, Hong S Y, Kim N, et al. ACS Nano, 2020, 14(3), 3660.
17 Kim K N, Chun J, Kim J W, et al. ACS Nano, 2015, 9(6), 6394.
18 Lv Z S, Tang Y X, Zhu Z Q, et al. Advanced Materials, 2018, 30(50), 1805468.
19 Xu Y F, Zhang Y, Guo Z Y, et al. Angewandte Chemie International Edition in English, 2015, 54(51), 15390.
20 Rogers J A, Someya T, Huang Y. Science, 2010, 327(5973), 1603.
21 Liu Y Q, He K, Chen G, et al. Chemical Reviews, 2017, 117(20), 12893.
22 Wu W. Science and Technology of Advanced Materials, 2019, 20(1), 187.
23 Lacour S P, Wagner S, Huang Z Y, et al. Applied Physics Letters, 2003, 82(15), 2404.
24 Musil J. Surface & Coatings Technology, 1998, 100, 280.
25 Kelly P J, Arnell R D. Vacuum, 2000, 56(3), 159.
26 Li T, Huang Z Y, Suo Z, et al. Applied Physics Letters, 2004, 85(16), 3435.
27 Thompson C V. Annual Review of Materials Science, 2000, 30, 159.
28 Thornton J A. Journal of Vacuum Science and Technology, 1974, 11(4), 666.
29 Novikov V Y. Acta Materialia, 1999, 47(18), 4507.
30 Petrov I, Barna P B, Hultman L, et al. Journal of Vacuum Science & Technology A, 2003, 21(5), S117.
31 Frost H J,Thompson C V, Walton D T. Acta Metallurgica Et Materialia, 1992, 40(4), 779.
32 Thompson C V, Carel R. Journal of the Mechanics & Physics of Solids, 1996, 44(5), 657.
33 Thompson C V, Carel R. Materials Science & Engineering B, 1995, 32(3), 211.
34 Daniel R, Martinschitz K J, Keckes J, et al. Acta Materialia, 2010, 58(7), 2621.
35 Xu J J, Huang J H, Sheng W, et al. Materials Reports A:Review Papers, 2019, 33(6), 1875 (in Chinese).
许君君, 黄金华, 盛伟, 等. 材料导报:综述篇, 2019, 33(6), 1875.
36 Rahe P, Lindner R, Kittelmann M, et al. Physical Chemistry Chemical Physics, 2012, 14(18), 6544.
37 Lacour S P, Jones J, Wagner S, et al. Proceedings of the IEEE, 2005, 93(8), 1459.
38 Lambricht N, Pardoen T, Yunus S. Acta Materialia, 2013, 61(2), 540.
39 Cong H L, Pan T R. Advanced Functional Materials, 2008, 18(13), 1912.
40 Qi D P, Liu Z Y, Leow W R, et al. MRS Bulletin, 2017, 42(2), 103.
41 Abadias G, Chason E, Keckes J, et al. Journal of Vacuum Science & Technology A, 2018, 36(2), 020801
42 Ma Y B, Chen M, Yan Y, et al. Journal of Aeronautical Materials, 2018, 38(1), 17 (in Chinese).
马一博, 陈牧, 颜悦, 等. 航空材料学报, 2018, 38(1), 17.
43 Freund L B, Suresh S. Thin film materials: stress, defect formation, and surface evolution, Cambridge University Press, UK, 2003.
44 Graudejus O, Gorrn P, Wagner S. ACS Applied Materials & Interfaces, 2010, 2(7), 1927.
45 Cordill M J, Taylor A, Schalko J, et al. Metallurgical and Materials Transactions A, 2009, 41(4), 870.
46 Seghir R, Arscott S. Scientific Reports, 2015, 5, 14787.
47 Alkhadra M A, Root S E, Hilby K M, et al. Chemistry of Materials, 2017, 29(23), 10139.
48 Chung J Y, Lee J H, Beers K L, et al. Nano Letters, 2011, 11(8), 3361.
49 Yu S J, Ma L, He L H, et al. Physical Review E, 2019, 100(5-1), 052804.
50 Graudejus O, Jia Z, Li T, et al. Scripta Materialia, 2012, 66(11), 919.
51 Wu K, Sun Y, Yuan H Z, et al. Nano Letters, 2020, 20(6), 4129.
52 Sun Y, Wu K, Wang Y Q, et al. Surface and Coatings Technology, 2020, 401, 126279.
53 Wu K, Yuan H Z, Li S J, et al. Scripta Materialia, 2019, 162, 456.
54 Yang T T, Li X M, Jiang X, et al. Materials Horizons, 2016, 3(3), 248.
55 Lu N S, Wang X, Suo Z G, et al. Applied Physics Letters, 2007, 91(22), 221909.
56 Li T, Suo Z. International Journal of Solids and Structures, 2007, 44(6), 1696.
57 Sun Y G, Choi W M, Jiang H Q, et al. Nature Nanotechnology, 2006, 1(3), 201.
58 Byun I, Coleman A W, Kim B. Journal of Micromechanics and Microengineering, 2013, 23(8), 085016.
59 Akogwu O, Kwabi D, Munhutu A, et al. Journal of Applied Physics, 2010, 108(12), 123509.
60 Pan S W, Liu Z Y, Wang M, et al. Advanced Materials, 2019, 31(35), 1903130.
61 Liu Z Y, Wang X T, Qi D P, et al. Advanced Materials, 2017, 29(2), 1603382.
62 Liu Z Y, Wang H, Huang P G, et al. Advanced Materials, 2019, 31(35), 1901360.
63 Yuan H Z, Wu K, Zhang J Y, et al. Advanced Materials, 2019, 31(25), 1900933.
64 Wang X L, Hu H, Shen Y D, et al. Advanced Materials, 2011, 23(27), 3090.
65 Yu C J, Jiang H Q. Thin Solid Films, 2010, 519(2), 818.
66 Chung S, Lee J, Song H, et al. Applied Physics Letters, 2011, 98(15), 153110.
67 Qi D P, Liu Z Y, Yu M, et al. Advanced Materials, 2015, 27(20), 3145.
68 Yang J C, Mun J, Kwon S Y, et al. Advanced Materials, 2019, 31(48), 1904765.
69 Li J, Bao R R, Tao J, et al. Applied Physics Reviews, 2020, 7(1), 011404.
70 Ha M, Lim S, Ko H. Journal of Materials Chemistry B, 2018, 6(24), 4043.
71 Zhang L, Kou H R, Tan Q L, et al. Journal of Physics D-Applied Phy-sics, 2019, 52(39), 395401.
72 Kang D, Pikhitsa P V, Choi Y W, et al. Nature, 2014, 516(7530), 222.
73 Liu Z Y, Qi D P, Guo P Z, et al. Advanced Materials, 2015, 27(40), 6230.
74 Zou Q, Zheng J, Su Q, et al. Sensors and Actuators A-Physical, 2019, 300, 111658.
75 Miao W N, Yao Y X, Zhang Z W, et al. Nature Communications, 2019, 10(1), 3862.
76 Nur R, Matsuhisa N, Jiang Z, et al. Nano Letters, 2018, 18(9), 5610.
77 Choi S, Lee S, Lee B, et al. Thin Solid Films, 2020, 707, 138068.
78 Lee J, Kim S, Lee J, et al. Nanoscale, 2014, 6(20), 11932.
79 Wang X L, Guo R, Liu J. Advanced Materials Technologies, 2018, 4(2), 1800549.
80 Ren Y, Sun X Y, Liu J. Micromachines (Basel), 2020, 11(2), 200
81 Zhang Z X, Tang L, Chen C, et al. Journal of Materials Chemistry A, 2021, 9, 875
82 Li F L, Li S B, Cao J W, et al. Materials Reports A:Review Papers, 2020, 34(1), 01059 (in Chinese).
李法利, 李晟斌, 曹晋玮, 等. 材料导报:综述篇, 2020, 34(1), 01059.
83 Palleau E, Reece S, Desai S C, et al. Advanced Materials, 2013, 25(11), 1589.
84 Li G Y, Wu X, Lee D W. Lab on a Chip, 2016, 16(8), 1366.
[1] 易聪, 王佳仪, 袁伟, 张东煜, 苏文明, 崔铮, 孙立涛. 基于褶皱结构可拉伸织物电极的制备与应用[J]. 材料导报, 2022, 36(Z1): 21110214-6.
[2] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[3] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[4] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[5] 盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
[6] 王斌, 孙顺平, 王洪金, 李小平, 雷卫宁. 电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响[J]. 材料导报, 2022, 36(13): 21040249-6.
[7] 朱月风, 赵向臻, 司春棣, 闫涛, 李彦伟. 自修复型微胶囊在沥青路面中的受力分析及破裂机制[J]. 材料导报, 2022, 36(10): 20120095-6.
[8] 仇伟夷, 祝祥辉, 黄伟九, 杨绪盛, 汪鑫. 晶界特征对AA2099铝锂合金疲劳加载分层断裂影响探究[J]. 材料导报, 2022, 36(10): 21030256-5.
[9] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[10] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[11] 张忠科, 刘旭峰, 李昭, 雄健强. P92钢等离子弧焊接接头原位拉伸的SEM观察研究[J]. 材料导报, 2021, 35(24): 24128-24133.
[12] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[13] 周圣雄, 王威娜, 秦煜, 刘佳亮. 基于声发射特征参数的玻纤格栅复合梁阻裂机理表征[J]. 材料导报, 2021, 35(22): 22033-22038.
[14] 宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
[15] 苏丽芬, 常展鹏, 宁玉盈, 汪路, 方雅涵, 方炳虎, 柯玉超, 杨斌, 夏茹, 钱家盛, 苗蕾. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18): 18024-18029.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed