Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21060067-8    https://doi.org/10.11896/cldb.21060067
  无机非金属及其复合材料 |
多元胶凝材料体系再生混凝土力学性能试验研究
王家滨1,2, 侯泽宇1,2, 张凯峰3, 王斌1, 李恒1
1 西安工业大学建筑工程学院,西安 710021
2 西安工业大学,西安市军民两用土木工程测试技术与毁损分析重点实验室,西安 710021
3 中建西部建设北方有限公司,西安 710065
Experiment Research of Mechanical Properties on Recycled Aggregate Concrete with Multiple Cementitious Materials System
WANG Jiabin1,2, HOU Zeyu1,2, ZHANG Kaifeng3, WANG Bin1, LI Heng1
1 Civil & Architecture Engineering, Xi'an Technological University, Xi'an 710021, China
2 Xi'an Key Laboratory of Civil Engineering Testing and Destruction Analysis on Military-Civil Dual Use Technology (XATU), Xi'an Technological University, Xi'an 710021, China
3 China West Construction North Co., Ltd.,Xi'an 710065, China
下载:  全 文 ( PDF ) ( 8320KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以粉煤灰、矿渣、硅灰和偏高岭土为辅助胶凝材料,与水泥构成二元、三元及多元胶凝材料体系,通过改变体系内辅助胶凝材料种类及掺加比例,设计35个配合比,测试再生混凝土(RAC)的抗压强度、劈裂抗拉强度、轴心抗压强度和抗折强度,系统研究多元胶凝材料体系对RAC力学性能的影响及力学性能指标之间的关系。二元胶凝体系中,粉煤灰与硅灰取代率超过20%(如无特殊说明,均为质量分数,下同)时RAC抗压强度快速下降。采用三元胶凝体系,粉煤灰取代率降低,RAC力学性能提高。辅助胶凝材料掺加比例相同(总取代率30%,质量比1∶1)时,水泥-粉煤灰-偏高岭土体系RAC力学性能远高于水泥-粉煤灰-矿渣体系RAC。多元胶凝体系RAC力学性能与体系内辅助材料种类有显著的关系,水泥-粉煤灰-硅灰-偏高岭土体系RAC力学性能是水泥-粉煤灰-矿渣-硅灰体系RAC的1.1倍。当粉煤灰、矿渣、硅灰、偏高岭土的质量比为3∶1∶1∶1时,RAC力学性能最高,养护龄期90 d时抗压强度和劈裂抗拉强度分别为67.4 MPa和5.23 MPa。采用XRD及综合热分析法,对三元及多元胶凝体系再生混凝土物相组成及其相对含量进行测试,从微观角度分析再生混凝土宏观力学性能变化机理。通过分析水泥-粉煤灰-矿渣体系再生混凝土三种力学性能指标之间的关系,轴心抗压强度与立方体抗压强度呈正相关,劈裂抗压强度与立方体抗压强度呈指数关系,建立了考虑再生骨料取代率的力学性能关系模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家滨
侯泽宇
张凯峰
王斌
李恒
关键词:  再生混凝土  多元胶凝体系  辅助胶凝材料  力学性能  强度关系    
Abstract: In order to research the influence of mechanical properties of recycled aggregate concrete (RAC) with multiple cementitious materials system and the relationship between strength indexes of splitting tensile strength, axial compressive strength and cubic compressive strength, thirty-five RAC mixtures with binary, ternary, quaternary and multiple cementitious materials system (CMS) based on cement, fly ash, slag , silica fume and metakaolin were designed. For binary binder system, the compressive strength of RAC was first increased and then quickly decreased as the highest replacement of 20wt% on fly ash and silica fume. With the replacement of fly ash reducing, the mechanical properties of RAC with ternary binder system are enhanced. About ternary binder system, the mechanical properties of RAC with 15wt% fly ash and 15wt% metakaolin were obviously higher than those with 15wt% fly ash and 15wt% slag. Further more, the strengths of RAC with multiple CMS had the significantly effect on SCMs combination. When the mass ratio of fly ash, slag, silica fume and metakaolin was 3∶1∶1∶1, the compressive and splitting tensile strengths of RAC were 67.4 MPa and 5.23 MPa, respectively. In addition, the mineral composition and its relative content of RAC curing for 90 d were tested by XRD and thermal analysis method. On the other hand, there were positive linear and exponential relationship between axial compressive/splitting tensile strength and cubic compressive strength, respectively. Meanwhile, the relationship models based on the replacement of recycled aggregate were established.
Key words:  recycled aggregate concrete    multiple cementitious materials system    supplementary cementitious material    mechanical property    relationship of strength indexes
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TU528.44  
基金资助: 国家自然科学基金(51908440);陕西省自然科学基金(2021JM-426)
通讯作者:  wangjiabin@xatu.edu.cn   
作者简介:  王家滨,西安工业大学建筑工程学院副教授。2012年硕士毕业于西安建筑科技大学材料科学与工程学院,2017年博士毕业于西安建筑科技大学土木工程学院。主要从事混凝土结构耐久性相关方面的研究。主持/参与国家自然科学基金和省部级项目7项,发表学术论文30余篇。
引用本文:    
王家滨, 侯泽宇, 张凯峰, 王斌, 李恒. 多元胶凝材料体系再生混凝土力学性能试验研究[J]. 材料导报, 2022, 36(12): 21060067-8.
WANG Jiabin, HOU Zeyu, ZHANG Kaifeng, WANG Bin, LI Heng. Experiment Research of Mechanical Properties on Recycled Aggregate Concrete with Multiple Cementitious Materials System. Materials Reports, 2022, 36(12): 21060067-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060067  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21060067
1 Xiao J Z, Li W G, Fan Y H, et al. Construction & Building Materials, 2012, 31,364.
2 Xiao J Z, Li W, Ding T. Journal of Southeast University (Natural Science Edition), 2016, 46(5), 1088(in Chinese).
肖建庄, 黎骜, 丁陶.东南大学学报(自然科学版), 2016, 46(5), 1088.
3 Lee G C, Choi H B. Construction & Building Materials, 2013, 40,455.
4 Thomas C, Setién J, Poloanco J A, et al. Construction and Building Materials, 2013, 40,1054.
5 Wang Y S, Zheng J L, You F. Material Reports,2021, 35(3),05053(in Chinese).
王雅思, 郑建岚, 游帆. 材料导报, 2021, 35(3), 05053.
6 Özgür Ç, Hasan D. Construction and Building Materials, 2021, 268(6),121776.
7 Purushothaman R, Amirthavalli R R, Karan L. Journal of Materials in Civil Engineering, 2015, 27(5), 14168.
8 Shi C J, Wu Z M, Cao Z J, et al. Cement & Concrete Composites, 2018, 86,130.
9 Leena C, Vishakha B, Singh L P, et al. Construction and Building Materials, 2019, 195,340.
10 Wu C R, Zhu Y G, Zhang X T, et al. Cement and Concrete Composites, 2018, 94,248.
11 Xu J J, Wu Z H, Wang H, et al. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2020, 52(3), 396(in Chinese).
徐金俊,乌忱昊,王浩,等. 西安建筑科技大学学报(自然科学版), 2020, 52(3), 396.
12 Ali K, Mansour G, Jorgede B, et al. Journal of Cleaner Production, 2018, 170, 42.
13 Zhang M M, Wang S L, Zhang S M, et al. Bulletin of the Chinese Cera-mic Society, 2017, 36(5), 1505(in Chinese).
张明明, 王社良, 张世民, 等.硅酸盐通报, 2017, 36(5), 1505.
14 Vivian W Y, Gao X F, Tam C M. Cement and Concrete Research, 2005, 35(6), 1195.
15 Qu C P, Sun Y Q, Zhang P. Concrete, 2020(9),82(in Chinese).
曲成平,孙燕群,张鹏. 混凝土, 2020(9),82.
16 Majhi R K, Nayak A N, Mukharjee B B. Construction and Building Materials, 2018, 159, 417.
17 Ali M A, Cihat Y, Ahsanollah B, et al. Construction and Building Materials, 2019, 196,295.
18 Liu K N, Wang S L, Peng X H, et al. Concrete, 2018(6), 93(in Chinese).
刘康宁, 王社良, 彭晓晖, 等. 混凝土, 2018(6), 93.
19 Xiao J Z, Ma X W, Liu Q, et al. Journal of Architecture and Civil Engineering, 2021, 38(2), 1(in Chinese).
肖建庄,马旭伟,刘琼, 等. 建筑科学与工程学报, 2021, 38(2), 1.
20 Babar A, Muhammad A G Ali R. Construction and Building Materials, 2021, 277, 122329.
21 Guo Z G, Jiang T, Zhang J, et al. Construction and Building Materials, 2020, 231,117115.
22 Zhang J X, Jin S S. Micro-pores structure of cement concrete, Science Press, China, 2014.
张金喜, 金珊珊. 水泥混凝土微观孔隙结构与其作用, 科学出版社, 2014.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[8] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[9] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[10] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[11] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[12] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[13] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[14] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[15] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed