Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21080194-5    https://doi.org/10.11896/cldb.21080194
  无机非金属及其复合材料 |
建筑与景观设计用功能性复合硅酸盐无机涂料的应用研究进展
罗坤明1, 邵宇2, 陈 凡1, 叶楠3
1 江西旅游商贸职业学院艺术传媒与计算机学院,南昌 330039
2 南昌大学艺术与设计学院,南昌 330031
3 南昌大学材料科学与工程学院,南昌 330031
Application and Research Progress of Functional Composite Silicate Inorganic Coatings for Architecture and Landscape Design
LUO Kunming1, SHAO Yu2, CHEN Fan1, YE Nan3
1 College of Art Media and Computer Science, Jiangxi Touerism & Commerce Vocational College, Nanchang 330039, China
2 School of Art and Design, Nanchang University, Nanchang 330031, China
3 College of Material Science and Engineering, Nanchang University,Nanchang 330031, China
下载:  全 文 ( PDF ) ( 2825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机涂料与无机涂料相比,不具备健康环保、工艺简单、性能稳定等特性。随着涂料的功能性复合需求不断提升,施工工艺(如以无机硅酸盐涂料代替溶剂型涂料)已成为建筑与景观设计施工优良与否的重要评判因素。为更好地把握无机硅酸盐涂料的发展规律和方向,满足功能性复合涂料的开发应用,本文介绍了无机硅酸盐涂料的特征与应用及其在国内外的改性研究进展。在固化成膜机理上,分析总结了涂料中硅与碱金属氧化物的占比影响、粘合剂与不同基底成分以及大气成分发生化学固化过程的变化。同时重点针对无机硅酸盐涂料所存在的不足,包括空隙、粘结力、腐蚀持久性、耐水性等;总结分析了改性方式,主要有添加富锌改性、添加无机材料改性、添加有机聚合物改性等;阐述了改性研究中富锌颗粒添加、无机添加剂添加、有机-无机复合添加对无机硅酸盐涂料结构和性能的影响。最后提出未来在建筑与景观设计施工中功能性复合硅酸盐无机涂料的运用是主要研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗坤明
邵宇
陈 凡
叶楠
关键词:  硅酸盐涂料  建筑与景观设计  固化成膜  复合改性    
Abstract: Organic coatings do not have the characteristics of health and environmental protection, simple process and stable performance, compared with inorganic coatings. With the increasing demand for functional composite coatings, the construction technology, such as replacing solvent-based coatings with inorganic silicate coatings, has been an important judging factor for the excellent construction of architectural and landscape design. In order to better grasp the development rules and directions of silicate inorganic coatings and meet the development and application of functional composite coatings, this paper introduces the characteristics and applications of silicate inorganic coatings and their domestic and international modification research progress. In terms of curing film-forming mechanism, the analysis summarizes the influence of the percentage of silicon and alkali metal oxides, as well as the changes in the chemical curing process occurring between the adhesive and different substrate components and atmospheric components. Also the deficiencies of inorganic silicate coatings are focused on, including voids, adhesion, corrosion persistence, water resistance, etc. The modification methods are summarized and analyzed, mainly involving the addition of zinc-rich modification, the addition of inorganic class materials modification and the addition of organic polymers modification. The effects of Zn-rich particle addition, inorganic additive addition and organic-inorganic composite addition on the structure and properties of inorganic silicate coatings in the modification study are described. Finally, it is proposed that the use of functional composite silicate inorganic coatings is the main direction in the future architectural and landscape design and construction.
Key words:  silicate coating    architecture and landscape design    curing film forming    compound modification
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TQ630  
通讯作者:  249932573@qq.com   
作者简介:  罗坤明,江西旅游商贸职业学院教师,2008年本科毕业于南昌大学艺术与设计学院,2010年12月在南昌大学艺术与设计学院取得硕士学位。现任教环境空间设计,主要从事环境空间设计、环境建筑材料研究。近年来,发表论文10余篇。
邵宇,南昌大学副教授,硕士研究生导师。1993年本科毕业于南昌职业技术师范学院,硕士毕业于南昌大学历史专业。现任教环境视觉空间设计,发表学术论文多篇,其中《试析宋代风俗画产生发展的原因》发表于南昌大学学报(中文核心期刊,CSSCI来源刊),为《新华文摘》收录。
引用本文:    
罗坤明, 邵宇, 陈 凡, 叶楠. 建筑与景观设计用功能性复合硅酸盐无机涂料的应用研究进展[J]. 材料导报, 2022, 36(12): 21080194-5.
LUO Kunming, SHAO Yu, CHEN Fan, YE Nan. Application and Research Progress of Functional Composite Silicate Inorganic Coatings for Architecture and Landscape Design. Materials Reports, 2022, 36(12): 21080194-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080194  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21080194
1 Mariappan T, Kamble A, Naik S M. Progress in Organic Coatings, 2019, 131, 371.
2 Wang C, Qin Z, Feng K, et al. Journal of Polymer Research, 2020, 27(12), 367.
3 Li D. Architectural Design, 2021, 48(3), 37 (in Chinese).
李夺.建筑技术开发, 2021, 48(3), 37.
4 Xu R, He T, Yang R, et al. Construction and Building Materials, 2020, 237, 117521.
5 Qin Z B, Xia D H, Wu Z, et al. Surface Technology, 2019, 48(12), 34 (in Chinese).
秦真波, 夏大海, 吴忠, 等.表面技术, 2019, 48(12), 34.
6 Naser K M, Danaee I, Zaarei D. Anti-Corrosion Methods and Materials, 2013, 60(1), 37.
7 Benda P, Kalendová A. Physics Procedia, 2013, 44, 185.
8 Li J H, Weng R, Di X Q, et al. Journal of Applied Polymer Science, 2014, 131(20), 40955.
9 Haase J, Leung L, Evans P. Coatings, 2018, 9(1), 8.
10 Zhao X, Qi Y, Zhang Z, et al. Coatings, 2019, 9(12), 833.
11 Xu R, He T. Journal of Alloys and Compounds, 2019, 811, 152008.
12 Sun M, Ma Z, Li A, et al. Progress in Organic Coatings, 2020, 139, 105462.
13 Fu W, Wang L, Huang J Z. Advanced Materials Research,2011,189(2),252.
14 Qiu W, Liu J X, Zeng S, et al. Surface Technology, 2012, 41(6), 108 (in Chinese).
仇伟, 刘见祥, 曾舒, 等.表面技术, 2012, 41(6), 108.
15 Chen Y, Pan H W, Chen W Z, et al. Journal of Chongqing University of Technology(Natural Science), 2018, 32(6), 100 (in Chinese).
陈雁, 潘海伟, 陈文卓, 等. 重庆理工大学学报(自然科学), 2018, 32(6), 100.
16 Gettwert G, Rieber W, Bonarius J. Surface Coatings International, 1998, 81(12), 596.
17 Parashar G, Bajpayee M, Kamani P. Surface Coatings International Part B: Coatings Transactions, 2003, 86(3), 209.
18 Goodarzi I M, Farzam M, Shishesaz M R, et al. Iranian Journal of Oil & Gas Science and Technology, 2014, 3(1), 41.
19 Shreepathi S, Bajaj P, Mallik B P. Electrochimica Acta, 2010, 55(18), 5129.
20 Zhao X, Qi Y, Zhang Z, et al. Coatings, 2019, 9(7), 415.
21 Aloni R, Levin Y, Uziel O, et al. The Journals of Gerontology: Series B, 2021, 76(2), 262.
22 Atta A M, Ezzat A O, El-Saeed A M, et al. Progress in Organic Coa-tings, 2020, 141, 105549.
23 Yun T H, Park J H, Kim J S, et al. Progress in Organic Coatings, 2014, 77(11), 1780.
24 Teng S, Gao Y, Cao F, et al. Progress in Organic Coatings, 2018, 123, 185.
25 Kalendová A. Progress in Organic Coatings, 2003, 46(4), 324.
26 Zhang L, Ma A, Jiang J, et al. Materials International, 2012, 22(4), 326.
27 Yu F, Camilli L, Wang T, et al. Carbon, 2018, 132, 78.
28 Cheng L, Liu C, Han D, et al. Journal of Alloys and Compounds, 2019, 774, 255.
29 Huang S, Kong G, Yang B, et al. Progress in Organic Coatings, 2020, 140, 105531.
30 Li S, Ding J, Shawgi N, et al. Research on Chemical Intermediates, 2015, 42(4), 3507.
31 Yang X, Zhu W. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53(2), 299.
32 Yang Q, Yang X H, Wang P, et al. Pigment & Resin Technology, 2009, 38(3), 153.
33 Cheng L, Luo Y, Ma S, et al. Journal of Alloys and Compounds, 2019, 786, 791.
34 Chen L, Wang Z Q, Wei T, et al. Advanced Materials Research, 2015, 1095, 626.
35 Wu G M, Kong Z W, Chen J, et al. Progress in Organic Coatings, 2014, 77(2), 315.
36 Wang J, Qi Y, Zhao X, et al. Coatings, 2020, 10(5), 444.
37 Goodarzi I M, Farzam M, Shishesaz M R, et al. Journal of Applied Polymer Science, 2014, 131(12), 40370.
38 Cheng L, Wang Y, Sheng C, et al. Journal of Applied Polymer Science,2020,137(31),48918.
[1] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[2] 周志刚, 陈功鸿, 张红波, 凌永毅. 橡胶粉/SBS与高黏剂复合改性沥青的制备及性能研究[J]. 材料导报, 2021, 35(6): 6093-6099.
[3] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[4] 孙振宇, 张源, 左迎峰, 吴义强, 王张恒, 吕建雄. 有机-无机复合改性速生木材研究现状与展望[J]. 材料导报, 2021, 35(5): 5181-5187.
[5] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[6] 王淋, 郭乃胜, 温彦凯, 谭忆秋, 尤占平. 考虑老化影响的岩沥青复合改性沥青流变特性及微观机制[J]. 材料导报, 2020, 34(18): 18065-18073.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed