Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 649-654    
  高分子与聚合物基复合材料 |
环境温度对纤维素醚改性石膏工作性的影响
郑海宇1, 王琴1, 王悦1, 张瑞峰1, 刘克俊2
1 北京建筑大学土木与交通工程学院建筑结构与环境修复功能材料北京市重点实验室,北京 100044
2 北京生态家园科技集团有限公司,北京 102628
Effect of Ambient Temperature on Workability of Cellulose Ether Modified Gypsum
ZHENG Haiyu1, WANG Qin1, WANG Yue1, ZHANG Ruifeng1, LIU Kejun2
1 Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Beijing Eco Home Technology Group Co., Ltd., Beijing 102628, China
下载:  全 文 ( PDF ) ( 2242KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素醚改性石膏在不同环境温度下的工作性能有很大差异,但其作用机理还不明确。研究了不同环境温度下纤维素醚对石膏浆体流变参数和保水性的影响,并通过动态光散射法测定了纤维素醚在液相中的流体力学直径,探究了其影响机理。结果表明纤维素醚对石膏有着良好的保水增稠效果,随着纤维素醚掺量的增加,浆体粘度增加、保水性提高,但是随着温度的升高改性石膏浆体的保水性有一定程度的降低,各项流变参数也发生改变。考虑到纤维素醚胶体缔合物可通过阻塞水分传输通道以实现保水,温度升高可能导致纤维素醚产生的大体积缔合物解体,从而使改性石膏的保水性降低、工作性变差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑海宇
王琴
王悦
张瑞峰
刘克俊
关键词:  石膏  纤维素醚  温度  保水性  流变    
Abstract: The working performance of cellulose ether modified gypsum varies greatly at different ambient temperatures, but its mechanism of action is still unclear.In this paper, the effect of cellulose ether on the rheological parameters and water retention of gypsum slurry under different ambient temperatures was studied, and the hydrodynamic diameter of cellulose ether in the liquid phase was measured by dynamic light scattering method, which revealed its influence mechanism. The results show that cellulose ether has a good effect on water retention and thickening. The water retention and viscosity of gypsum slurry increase with the increase of the content. The higher viscosity of HPMC, the better thickening effect. With the increase of temperature, the water retention of the modified gypsum slurry has a certain degree of reduction and the rheological parameters varied a lot. Considering that the cellulose ether colloidal association can block the water transmission channel to achieve water retention, the increase in temperature may cause the disintegration of the bulky association produced by the cellulose ether, thereby reducing the water retention of the modified gypsum and workability.
Key words:  gypsum    cellulose ether    temperature    water retention    rheology
                    发布日期:  2021-12-09
ZTFLH:  TQ177  
通讯作者:  wangqin@bucea.edu.cn   
作者简介:  郑海宇,2019年6月毕业于北京建筑大学,获得工学学士学位。现为北京建筑大学土木与交通工程学院研究生,在王琴教授的指导下进行研究。目前主要研究领域为石膏基胶凝材料。
王琴,中科院硕士,华东理工大学博士,清华大学、美国西北大学访问学者。主要研究方向:氧化石墨烯/石墨烯改性水泥基材料、功能性外加剂和石膏基材料。承担国家自然科学基金“氧化石墨烯对水泥水化历程的调控机理研究”、北京市基金“石墨烯水泥复合机敏材料的制备及性能研究”等多项科研项目,发表高水平SCI论文10余篇,曾被评选为2018年度优秀论文(F5000)。
引用本文:    
郑海宇, 王琴, 王悦, 张瑞峰, 刘克俊. 环境温度对纤维素醚改性石膏工作性的影响[J]. 材料导报, 2021, 35(z2): 649-654.
ZHENG Haiyu, WANG Qin, WANG Yue, ZHANG Ruifeng, LIU Kejun. Effect of Ambient Temperature on Workability of Cellulose Ether Modified Gypsum. Materials Reports, 2021, 35(z2): 649-654.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/649
1 彭家惠, 李青, 张建新, 等. 重庆建筑大学学报, 2003(4), 70.
2 管学茂, 罗树琼, 杨雷, 等. 混凝土, 2006(10), 35.
3 王培铭, 赵国荣, 张国防. 硅酸盐学报, 2017, 45(8), 1190.
4 邵自强, 王俊飞. 纤维素酶, 化学工业出版社, 2016.
5 艾冬明, 张景伟, 张道令. 新型建筑材料, 2019, 46(7), 41.
6 李志博, 田胜力, 章银祥, 等.新型建筑材料, 2019, 46(4), 28.
7 Singh N B, Middendorf B. Progress in Crystal Growth and Characterization of Materials, 2007, 53(1), 57.
8 Mróz P, Mucha M. International Journal of Engineering Research & Science, 2017, 3(6), 5.
9 彭家惠, 张建新, 陈明凤, 等.硅酸盐学报, 2008(7), 896.
10 牟国栋.硅酸盐学报, 2002(4), 532.
11 Czaderna A, Kocemba A, Kozanecki M, et al. Construction and Building Materials, 2018, 160, 628.
12 Mróz P, Mucha M. Journal of Thermal Analysis and Calorimetry, 2018, 134(2), 1083.
13 Bülichen D, Kainz J, Plank J. Cement and Concrete Research, 2012, 42(7), 953.
14 Bülichen D, Plank J. Cement and Concrete Research, 2013, 46, 66
15 Bodvik R, Dedinaite A, Karlson L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354(1), 162.
16 蹇守卫, 马保国, 苏雷, 等.硅酸盐通报, 2011, 30(3), 560.
17 张晓然. 机喷抹灰石膏的制备及其性能研究.硕士学位论文, 北京工业大学, 2016.
18 黄滔. 新拌石膏浆体的流变性能研究.博士学位论文, 重庆大学, 2018.
19 欧志华, 刘广, 黄春华, 等.材料导报:研究篇, 2016, 30(7), 135.
20 Yahia A, Khayat K H. Cement and Concrete Research, 2001, 5(31), 731.
21 Pierre A, Lanos C, Estellé P, et al. Cement and Concrete Research, 2015, 76, 70.
22 Zhenzhen Z, Baoguo M, Hongbo T, et al. Journal of Materials in Civil Engineering, 2018, 30(7), 7.
23 邓鑫, 李军, 卢忠远, 等.非金属矿, 2020, 43(3), 1.
24 韩静云, 宋旭艳, 郜志海.非金属矿, 2014,37(4):32.
25 许霞, 吴开胜, 李龙梓.新型建筑材料, 2016, 43(1), 4.
26 吴彻平, 彭家惠, 瞿金东, 等.材料导报:研究篇, 2011, 25(10), 121.
27 Bülichen D, Plank J. Journal of Applied Polymer Science, 2012, 126(S1), E25.
28 Bodvik R, Karlson L. Langmuir, 2012, 28(38), 13562.
29 Bodvik R, Macakova L, Karlson L, et al. Langmuir, 2012, 28(25), 9515.
30 Bodvik R, Thormann E, Karlson L, et al. Physical Chemistry Chemical Physics, 2011, 13(10), 4260.
[1] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[2] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[3] 罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
[4] 贺诚, 李庆超, 周涵, 李东旭. 石膏基地面轻质保温层材料的制备及性能研究[J]. 材料导报, 2021, 35(z2): 236-240.
[5] 董一苇, 徐祖顺, 杨婷婷, 高庆. 化学石膏制备α-半水石膏的研究进展[J]. 材料导报, 2021, 35(z2): 241-247.
[6] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[7] 吴磊, 陶忠, 赵志曼, 陶燕, 张毅, 刘卓. 基于NSGM(1,3)模型的短切聚丙烯纤维-磷建筑石膏复合材料强度预测[J]. 材料导报, 2021, 35(z2): 655-659.
[8] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[9] 索智, 陈欢, 张奥, 聂磊. 废植物油再生沥青紫外老化机理及路用性能[J]. 材料导报, 2021, 35(Z1): 662-668.
[10] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[11] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[12] 谢锐, 吕铮, 徐长伟, 刘春明. 热等静压温度对雾化合金粉制备的9Cr-ODS钢组织和性能的影响[J]. 材料导报, 2021, 35(8): 8169-8178.
[13] 杨少朋, 尉文超, 胡芳忠, 王毛球, 汪开忠, 王自敏, 时捷. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183.
[14] 邵亚丽, 王喜明. 木材形状记忆效应与机理的研究进展[J]. 材料导报, 2021, 35(7): 7190-7198.
[15] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed