Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 642-648    
  高分子与聚合物基复合材料 |
喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究
孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰
青岛理工大学土木工程学院,青岛 266033
Research of Explosion Resistance of Sprayed Anti-blast Polyurea Reinforced Concrete Slab
SUN Pengfei, LYU Ping, HUANG Weibo, ZHANG Rui, FANG Zhiqiang, SANG Yingjie
Civil Engineering School,Qingdao University of Technology,Qingdao 266033, China
下载:  全 文 ( PDF ) ( 5963KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究爆炸载荷下喷涂抗爆型聚脲QtechT26(T26)对钢筋混凝土板的防护效果,对T26进行热重分析(TGA),研究了其在高温环境下的热稳定性能;对T26涂层钢筋混凝土板开展了非接触爆炸试验,结合扫描电镜(SEM)和傅里叶变换红外光谱(FTIR),获得了在10 kg TNT作用下结构的宏观破坏模式和涂层的微观损伤行为;利用LS-NYNA对试验过程进行了数值模拟并与试验结果对比,分析了T26涂层对钢筋混凝土板抗爆性能的影响以及涂层的耗能机理。研究结果表明:T26的初始降解温度为265 ℃,最终降解温度为510 ℃,开始降解和降解结束时的温度均较高,具有良好的热稳定性;T26涂层钢筋混凝土板的主要破坏模式是迎爆面涂层产生了局部撕裂破坏并呈现高温烧蚀状,背面和侧面的涂层无破坏,内部钢筋混凝土板未发生明显变形;在爆炸冲击波和高温的耦合作用下,T26涂层的断面和表面出现了大量的熔融絮状物和撕裂状裂纹,且表面的总氢键化程度和完善氢键化程度与爆炸前相比分别下降了21.5%、18.2%;数值模拟与试验结果吻合度较高,表明数值模型具有可靠性,数值模拟下的T26涂层钢筋混凝土板可以吸收和转化更多的能量,抗爆效果更好。爆炸试验和数值模拟结果均证明了T26涂层可有效增强钢筋混凝土板的抗爆性能,可为聚脲在抗爆领域的研究提供重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙鹏飞
吕平
黄微波
张锐
方志强
桑英杰
关键词:  聚脲  热稳定性  爆炸试验  数值模拟  抗爆性能  耗能机理    
Abstract: In order to study the protective effect of sprayed anti-blast polyurea QtechT26 (T26) on reinforced concrete slabs under explosive load, thermogravimetric analysis (TGA) was performed on T26, and its thermal stability under high temperature environment was studied. A non-contact explosion test was carried out on T26-coated reinforced concrete slabs, combined with scanning electron microscopy (SEM) and Fourier infrared spectroscopy (FTIR), the macroscopic failure mode of the structure and the microscopic damage behavior of the coating under the action of 10kg TNT were obtained. Using LS-NYNA to numerically simulate the test process and compare with the test results, the effect of T26 coating on the anti-blast performance of reinforced concrete slabs and the energy dissipation mechanism of the coating are analyzed. The research results show that the initial degradation temperature of T26 is 265 ℃, and the final degradation temperature is 510 ℃. The temperature at the beginning of degradation and the completion of degradation are both high, and it has good thermal stability. The main failure mode of the T26-coated reinforced concrete slab is the partial tearing of the front surface coating and a certain bulge. The maximum bulge height is 30 mm, and the front surface presents a high-temperature ablation. The coating on the back explosion surface and the side surface is not damaged, and the internal reinforced concrete slab is not significantly deformed. Under the coupling effect of the explosion shock wave and the high temperature, a large amount of molten flocs appear on the section and surface of the T26 coating. The total hydrogen bonding degree and the perfect hydrogen bonding degree of the surface are reduced by 21.5% and 18.2%, respectively, compared with before the explosion. The numerical simulation and the experimental results are in good agreement, indicating that the numerical model is reliable. The T26 coated reinforced concrete slab under the numerical simulation can absorb and transform more energy, and the anti-blast effect is better. Explosion test and numerical simulation results have proved that T26 coating can effectively enhance the anti-blast performance of reinforced concrete slabs, which can provide an important reference for the research of polyurea in the field of structural explosion protection.
Key words:  polyurea    thermal stability    explosion test    numerical simulation    anti-blast performance    energy dissipation mechanism
                    发布日期:  2021-12-09
ZTFLH:  O383+.2  
  TB34  
通讯作者:  13964222593@163.com   
作者简介:  孙鹏飞,2019年6月毕业于山东农业大学,获得工学学士学位。现为青岛理工大学土木工程学院硕士研究生,目前主要研究领域为新型功能材料,具体研究方向为复合材料抗爆抗冲击。
吕平,青岛理工大学土木工程学院教授、博士研究生导师。1986年陕西科技大学无机非金属材料专业本科毕业,1989年陕西科技大学无机非金属材料专业硕士毕业后到青岛理工大学工作至今,2006年中国海洋大学海洋化学专业博士毕业。目前主要从事结构耐久性研究与防护技术、新材料及高性能涂敷材料等方面的研究工作。
引用本文:    
孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
SUN Pengfei, LYU Ping, HUANG Weibo, ZHANG Rui, FANG Zhiqiang, SANG Yingjie. Research of Explosion Resistance of Sprayed Anti-blast Polyurea Reinforced Concrete Slab. Materials Reports, 2021, 35(z2): 642-648.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/642
1 段玉龙, 余明高, 姚新友, 等. 中国安全生产科学技术, 2018, 14(1),56.
2 Nam J W, Kim H J, Kim S B, et al. International Journal of Damage Mechanics, 2009, 18(5),461.
3 蔡桂杰. 弹性体涂覆钢筋混凝土板抗爆作用设计方法研究. 硕士学位论文, 中北大学, 2015.
4 汪维, 杨建超, 汪剑辉, 等. 爆炸与冲击, 2020, 40(12),14.
5 黄微波, 宋奕龙, 马明亮, 等. 工程塑料应用, 2019, 47(1),148.
6 Song J H, Lee E T, Eun H C.Advances in Civil Engineering, 2020, 2020(11),1.
7 Chen Y S, Wang B, Zhang B, et al.Defence Technology, 2020, 16(1),136.
8 黄微波,高金岗,李晶. 材料开发与应用, 2014, 29(4),82.
9 Aghdamy S, Wu C, Griffith M.International Journal of Protective Structures, 2013, 4(1),21.
10 Iqbal, Sharma P K, Kumar D, et al.Construction and Building Materials, 2018, 175,682.
11 Gu M, Ling X D, Wang H X, et al. Processes, 2019, 7(12),863.
12 Wang J G, Ren H G, Wu X Y, et al. Composites Part B-Engineering, 2017, 128,174.
13 蒲兴富. 弹性体增强混凝土砌体墙爆炸响应的数值分析. 硕士学位论文, 宁波大学, 2009.
14 Zhou Q, Li C, Li Q, et al.Journal of Applied Polymer Science, 2012, 125(5),3695.
15 张鹏. 聚脲涂覆结构抗弹抗爆防护性能与机制研究. 博士学位论文, 中北大学, 2020.
16 Y¹lgör E, Y¹lgör I,Polymer, 2002, 43(24), 6551.
17 Kross R D, Nakamoto K, Fassel V A. Spectrochimica Acta, 1956, 8(3),142.
18 Tian C, Zhou Q, Li C, et al.Journal of Applied Polymer Science, 2012, 124(6),5229.
19 Chavan J G, Rath S K, Praveen S, et al. Progress in Organic Coatings, 2016, 90,350.
20 吕平. 海洋混凝土防护用新型聚天冬氨酸酯聚脲涂层的研究. 博士学位论文, 中国海洋大学, 2007.
21 Holmquist T J, Johnson G R, Cook W H. In: The 14th International Symposium on Ballistics, USA: American Defense Preparedness Association, 1993,pp.591.
22 王小伟, 何金迎, 祖旭东, 等. 工程塑料应用, 2017, 45(5),63.
23 王琪, 贾子健, 赵鹏铎, 等. 高压物理学报, 2020, 34(6),53.
[1] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[2] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[3] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[4] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[5] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[6] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[7] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[8] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[9] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[10] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[11] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[12] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[13] 任鑫, 窦春岳, 高志玉, 庄达, 齐鹏涛, 何维. 热处理数值模拟技术的研究进展[J]. 材料导报, 2021, 35(19): 19186-19194.
[14] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[15] 王亚楠, 曹凤香, 王永锋, 曹静, 李兆, 吴坤尧. 玻璃纤维增强硼酸酯改性酚醛树脂复合材料的摩擦学性能研究[J]. 材料导报, 2021, 35(18): 18210-18215.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed