Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 470-478    
  高分子与聚合物基复合材料 |
碳基纤维材料在能源领域的应用
蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡
浙江理工大学纺织科学与工程学院(国际丝绸学院), 杭州 310018
Applications of Carbon Based Fiber Materials in Energy Field
JIANG Xingyu, WANG Jieqiong, QIU Linlin, BAI Bing, JIN Zhengfei, MEI Deqiang, DU Pingfan
College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
下载:  全 文 ( PDF ) ( 2502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科技的发展与社会的进步,化石能源的弊端日渐显现,人们开始寻求清洁绿色的能源,研发节能高效的能源器件。碳基纤维材料拥有优异的力学、热学以及电化学性能,在新能源的开发利用与能源器件的设计构建中都起到了重要作用。本文主要对近年来碳基纤维材料在能量转换器件、能量储存器件以及能源工程中的应用进行综述,介绍了国内外的一些研究成果和最新进展。最后,提出碳基纤维材料在能源领域的应用中存在的问题,并对其未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋星宇
王洁琼
邱琳琳
白冰
金正飞
梅德强
杜平凡
关键词:  碳基纤维  碳纤维  碳纳米管纤维  石墨烯纤维  能源    
Abstract: WWith the development of science and technology and the progress of society, the disadvantages of fossil energy have become increasingly apparent. People try to seek clean and green energy, research and develop energy devices with great efficiency. Carbon-based fiber materials have excellent mechanical, thermal and electrochemical properties, and play an important role in the development and utilization of new energy, also in the design and construction of energy devices. This paper mainly reviews the application of carbon-based fiber materials in energy storage devices, energy conversion devices and energy engineering in recent years, quotes some research achievements and latest progress. Finally, we put forward the problems existing in the application of carbon-based fiber materials in the field of energy, also prospect the future development trend of carbon-based fiber materials.
Key words:  carbon based fiber    carbon fiber    carbon nanotube fiber    graphene fiber    energy
                    发布日期:  2021-12-09
ZTFLH:  TM910  
基金资助: 浙江省自然科学基金(LY21F040008);中国纺织联合会应用基础研究项目(J201801);国家级大学生创新创业训练计划项目(202010338001)
通讯作者:  dupf@zstu.edu.cn   
作者简介:  蒋星宇,本科毕业于浙江理工大学,获得纺织工程学士学位。现为浙江理工大学纺织科学与工程学院(国际丝绸学院)硕士研究生,在杜平凡教授的指导下进行研究,主要研究方向为碳基纤维材料与器件。
王洁琼,浙江理工大学纺织科学与工程学院(国际丝绸学院)本科生。主要研究为方向可穿戴纺织结构柔性能源器件、智能纺织品等。正在主持国家级大学生创新训练项目一项。
杜平凡,博士,浙江理工大学纺织科学与工程学院(国际丝绸学院)教授、博士研究生导师,浙江省高校中青年学科带头人。研究兴趣主要集中在纺织结构可穿戴柔性能源器件、智能纺织品、功能纺织品等方向。主持承担了国家自然科学基金、浙江省自然科学基金、中国纺织工业联合会应用基础研究项目等10多项科研项目;发表 SCI/EI 收录论文 50 篇;取得授权发明专利12项;2018.01—2019.01,美国北卡州立大学访问学者。
引用本文:    
蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
JIANG Xingyu, WANG Jieqiong, QIU Linlin, BAI Bing, JIN Zhengfei, MEI Deqiang, DU Pingfan. Applications of Carbon Based Fiber Materials in Energy Field. Materials Reports, 2021, 35(z2): 470-478.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/470
1 邹才能, 赵群, 张国生, 等.天然气工业, 2016, 36(1), 1.
2 杜祥琬.中国人口·资源与环境, 2014, 24(7), 1.
3 黄倩, 伍晓春, 吴暾艳.化学教育, 2020, 41(22), 1.
4 梁启超, 乔芬, 杨健, 等. 中国材料进展, 2019, 38(5), 506.
5 白宇冰, 王秋莹, 吕瑞涛, 等. 科学通报, 2016, 61(4-5), 489.
6 Wu M X, Sun M Y, Zhou H W, et al. Advanced Functional Materials, 2020, 30(7), 1.
7 侯明, 衣宝廉. 电化学, 2012, 18(1), 1.
8 黄鸿, 黄鲲. 技术进步, 2014, 35(8), 6.
9 Hou S C, Cai X, Fu Y P, et al. Journal of Materials Chemistry, 2011 (21), 13776.
10 Li W B, Sun M X, He J, et al. Journal of Materials Science and Engineering, 2015, 33(3), 410.
11 Liu J W, Kuo Y T, Klabunde K, et al. Acs Appl Mater Interfaces, 2009(8), 1645.
12 Xu W J, Choi S. In: Conference Record of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems. Hong Kong, China, 2010, pp.1187.
13 Chen T, Qiu L B, Cai Z B, et al. Nano Letters, 2012, 12(5), 2568.
14 Zhang S, Ji C Y, Bian Z Q, et al. ACS Nano, 2012, 6(8), 7191.
15 Zhang L H, Shi E Z, Ji C Y, et al. Nanoscale, 2012, 4(16), 4954.
16 Macdonald T J, Batmunkh M, Lin C, et al. Small Methods, 2019(3), 1.
17 Liu D Y, Zhao M Y, Li Y, et al. ACS Nano, 2012, 6(12), 11027.
18 Yin Z Y, Zhu J X, He Q Y, et al. Advanced Energy Materials, 2014, 4(1), 1.
19 Yang Z B. Pure & Applied Chemistry, 2016, 88(1-2), 113.
20 Yang Z B, Sun H, Chen T, et al. Angewandte Chemie, 2013(125), 1.
21 Ye Y, Gan L, Dai L, et al. Nanoscale, 2011, 3(4), 1477.
22 Zhang X, Shen Z. Fuel, 2002, 81(17), 2199.
23 Liu C H, Ko T H, Chang E C, et al. Journal of Power Sources, 2008(180), 276.
24 Yang H, Tu H C, Chiang I L.International Journal of Hydrogen Energy, 2010, 35(7), 2791.
25 付凤艳, 程敬泉. 应用化学, 2020, 37(4), 405.
26 Liu X P, Yang Z H, Zhang Y F, et al. International Journal of Hydrogen Energy, 2017, 42(15), 10275.
27 Park S M, Jung D H, Kim S K, et al. Electrochimica Acta, 2009, 54(11), 3066.
28 Wang H Y, Bernarda A, Huang C H, et al. Bioresource Technology, 2011, 102(1), 235.
29 Pophali A, Singh S, Verma N. International Journal of Hydrogen Energy, 2020, 6(162), 1.
30 申永涛, 张爱波. 当代化工, 2014, 43(10), 2086.
31 安立宝, 董帅.南京工业大学学报, 2019, 41(3), 395.
32 Hou S Y, Chi B, Liu G Z, et al. Electrochimica Acta, 2017(253), 142.
33 Rao C V, Ishikawa Y. The Journal of Physical Chemistry C, 2016, 116(6), 4340.
34 Xie X, Hu L B, Pasta M, et al. Nano Letters, 2011, 11(1), 291.
35 Hur S H, Park J N. Asia-Pacific Journal of Chemical Engineering, 2013, 8(2), 218.
36 Ghobadi S, Ani L I, Bakhtiari R, et al. Acs Sustainable Chemistry & Engineering, 2017(5), 8407.
37 Li H B, Yang P P, Xie Z Y, et al. Materials Science and Engineering of Powder Metallurgy, 2016, 21(6), 946.
38 Wang G C, Yu M S, Xie K W, et al. Journal of Power Sources, 2019, 438(227002), 1.
39 陈悦, 赵永欢, 褚朱丹, 等.纺织学报, 2019, 40(2), 173.
40 Yang S N, Cheng Y, Xiao X, et al. Chemical Engineering Journal, 2020(384), 1.
41 蔡欣, 侯绍聪, 于潇, 等. 高分子通报, 2014(8), 69.
42 刘永坤, 姚菊明, 卢秋玲, 等. 储能科学与技术, 2019, 8(1), 47.
43 麻伍军, 陈少华, 朱美芳. 中国材料进展, 2016, 35(2), 118.
44 Tarascon J M, Armand M. Nature, 2001(414), 359.
45 Qie L, Chen W M, Wang Z H, et al. Advanced Materials, 2012(24), 2047.
46 刘超, 史高峰, 董玉灿, 等. 化工新型材料, 2018, 46(12), 229.
47 Kim C, Yang K, Kojima M, et al. Advanced Functional Materials, 2006(16), 2393.
48 Yang X J, Teng D H, et al. Electrochemistry Communications, 2011(13), 1098.
49 张菡英, 刘明.工程塑料应用, 2015, 43(11), 132.
50 Chukov D, Stepashkin A, Tcherdyntsev V, et al. Inorganic Materials Applied Research, 2014, 5(4), 386.
51 Liu B, Wang X F, Liu B Y, et al. Nano Research, 2013, 6(7), 525.
52 Qin R H, Shao G Q, Hou J X, et al. Science Bulletin, 2017, 17, 1.
53 Casas C, Li W.Journal of Power Sources, 2012 (208), 74.
54 赵廷凯, 邓娇娇, 折胜飞, 等.碳素技术, 2015, 3(34), 1.
55 黄佳琦, 张强, 金涌, 等. 储能科学与技术, 2012, 1(1), 1.
56 李志杰, 梁奇, 陈栋梁, 等.应用化学, 2001, 18(4), 269.
57 Eom J Y, Park J W, Kwom H S, et al. Journal of the Electrochemical Society, 2006, 153(9), 1678.
58 Wang W, Kumta Prashant N.ACS Nano, 2010, 4(4), 2233.
59 Yue H J, Huang X K, Yang Y. Materials Letters, 2008(62), 3388.
60 Wang Y, Zeng H C, Lee J Y. Advanced Materials, 2006(18), 645.
61 杨俊杰, 张扬, 陈国印, 等. 中国材料进展, 2018, 37(5), 356.
62 闻雷, 陈静, 罗洪泽, 等. 科学通报, 2015, 60(7), 630.
63 蹇木强, 张莹莹, 刘忠范. 物理化学学报, 2021, 37(X), 1.
64 Hoshide T, Zheng Y, Hou J, et al. Nano Letters, 2017, 17(6), 3543.
65 Chong W G, Huang J Q, Xu Z L, et al. Advanced Functional Materials, 2017(27), 1.
66 Ma X X, Hou G M, Ai Q, et al. Scientific Reports, 2017, 7(9642), 1.
67 Zhou W J, Zhou K, Liu X J, et al. Journal of Materials Chemistry A, 2014(2), 7250.
68 Xiao J W, Wan L, Yang S H, et al. Nano Letter, 2014, 14(2), 831.
69 王赫, 王洪杰, 王闻宇, 等. 材料导报A:综述篇, 2018, 32(3), 730.
70 Xu Q, Yu X L, Liang Q H, et al. Journal of Electroanalytical Chemistry, 2015(739), 84.
71 Ning P G, Duan X C, Ju X K, et al. Electrochimica Acta, 2016 (210), 754.
72 Ren J, Bai W Y, Guan G Z, et al. Advanced Materials, 2013, 25(41), 5965.
73 Liu Q, Yang J J, Luo X G, et al. Ceramics International, 2020, 46(8), 11874.
74 Su F H, Miao M H. Nanotechnology, 2014, 25(13), 1.
75 Xu T, Zhang Z P, Qu L T. Advanced Materials, 2020, 32(5), 1.
76 Cheng H H, Hu C G, Zhao Y, et al. NPG Asia Materials, 2014(6), 1.
77 Meng Y N, Zhao Y, Hu C G, et al. Advanced Materials, 2013(25), 2326.
78 Chang Y Z, Han G Y, Fu D Y, et al. Journal of Power Sources, 2014(252), 113.
79 Yang Q Y, Xu Zhen, Fang B, et al. Journal of Materials Chemistry A, 2017, 5(42), 22113.
80 樊星. 化学工业, 2019, 37(4), 12.
81 Pimenta S, Pinho S T. Waste Management, 2011, 31(2), 378.
82 孙延. 材料科技与应用, 2019(9), 71.
83 刘頔, 朱成. 科技与创新, 2018(2), 5.
84 Dai Q, Kelly J, Elgowainy A. Sae International Journal of Materials & Manufacturin, 2017, 10(3), 378.
85 宋燕利, 杨龙, 郭巍, 等. 材料导报A:综述篇, 2016, 30(9), 16.
86 冶存良, 李红娟. 时代汽车, 2018, 302(11), 23.
87 Li J X, Wang D Y, Tian Y, et al. Journal of Physics: Conference Series, 2020, 1622(1), 1.
88 Guo W J, Bai S X, Ye Y C, et al. Ceramics International, 2019, 45(13), 16545.
89 Kim D H, Jung K H, Kim D J, et al. Composite Structures, 2017(176), 780.
90 Rahman A, Rashid M, Mohiuddin A K M, et al. IIUM Engineering Journal, 2015, 16(2), 57.
91 张胜男, 刘艳兵. 汽车工艺与材料, 2018(9), 1.
92 刘万双, 魏毅, 余木火. 纺织导报, 2016(5), 48.
93 冯永忠, 康永禄. 汽车维护与保养, 2016(3), 75.
94 闻笔荣, 周诚. 玻璃纤维, 2014(4), 42.
95 努兰·苏力坦汗, 孙文磊. 广州化工, 2015, 43(11), 16.
96 张文毓. 上海电气技术, 2017, 12(4), 55.
97 Hwang M Y, Jang H L, Kim S, et al. Renewable Energy, 2020(163), 1.
98 Wang B, Ming Y K, Zhu Y S, et al. Additive Manufacturing, 2019, 31(6), 100967.
99 Hiremath N, Young S, Ghossein H, et al. Composites Part B: Enginee-ring, 2020(198), 1.
100 Edwards P P, Kuznetsov V L, David W, et al. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1853), 1043.
101 吉力强, 赵英朋, 王凡, 等.金属功能材料, 2019, 26(6), 23.
102 佟珊珊, 王雪靖, 李庆川, 等. 分析化学, 2016, 44(9), 1447.
103 俞红梅, 衣宝廉. 中国工程科学, 2018, 20(3), 58.
104 Ji X X, Lin Y H, Zeng J, et al. Nature Communications, 2021, 12(1), 1.
105 Silva V D, Raimundo R A, Simoes T A, et al. International Journal of Hydrogen Energy, 2020, 46(5), 3798.
106 Sun L, Wang T, Zhang L, et al. Journal of Power Sources, 2018(377), 142.
107 Wu T X, Zhu X G, Wang G Z, et al. Nano Research, 2018, 11(2), 1.
108 Ruiz-Cornejo J C, Sebastian D, Lazaro M J.Reviews in Chemical Engineering, 2018, 36(4), 493.
109 秦玉琪, 袁奕雯, 杨振国. 中国特种设备安全, 2019, 35(2), 74.
110 霍现旭, 王靖, 蒋菱, 等. 储能科学与技术, 2016, 5(2), 197.
111 杨静怡. 现代化工, 2019, 39(10), 57.
112 Chang M, Meng X X, Wang Y, et al. International Journal of Hydrogen Energy, 2019, 44(56), 29583.
113 Ji D X, Peng S J, Lu J, et al. Journal of Materials Chemistry A, 2017, 5(16), 7507.
114 Kaneko T, Watanuki Y, Toyama T, et al. International Journal of Hydrogen Energy, 2017, 42(15), 10014.
[1] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[2] 胡炜杰, 钟明建, 杨营, 盘茂森, 任清刚. 碳纤维复合材料的回收与再利用技术[J]. 材料导报, 2021, 35(z2): 627-633.
[3] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[4] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[5] 邓嵩, 沈鑫, 刘璐, 凌定坤, 赵会军. 地热井系统腐蚀与防护的研究进展[J]. 材料导报, 2021, 35(21): 21178-21184.
[6] 陈琨, 张祥林, 安子乾, 程羽佳, 程小全, 冯振宇. 温度对碳纤维平纹布正交层合板拉伸疲劳性能的影响[J]. 材料导报, 2021, 35(16): 16195-16200.
[7] 樊立峰, 秦美美, 岳尔斌, 肖丽俊, 何建中. 新能源汽车对无取向硅钢的技术挑战[J]. 材料导报, 2021, 35(15): 15183-15188.
[8] 魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
[9] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[10] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[11] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[12] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[13] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[14] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[15] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed