Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 448-451    
  金属与金属基复合材料 |
粉床型电子束增材制造W-Nb合金的缺陷及显微组织
杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建
西北有色金属研究院金属多孔材料国家重点实验室,西安 710016
Defect and Microstructure of W-Nb Alloy Fabricated by Selective Electron Beam Melting
YANG Guangyu, TANG Huiping, LIU Nan, JIA Wenpeng, JIA Liang, YANG Kun, WANG Jian
National Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
下载:  全 文 ( PDF ) ( 3237KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用粉床型电子束增材制造技术(Selective electron beam melting, SEBM)制备了W-3.5Nb合金,分析了在电子束低速扫描、高速扫描、两次熔化三种熔化条件下W-3.5Nb合金的成形缺陷和显微组织。研究结果表明:W-3.5Nb合金的成形缺陷主要包括熔合不良和微裂纹,低速扫描可有效降低缺陷含量。熔合不良主要由熔池的球化和扰动导致,微裂纹主要是由凝固过程中枝晶间液相的凝固收缩引起。不同扫描速度下,熔池的凝固过程不同,合金呈现出不同的组织特点。在高速扫描时,由于扫描层间熔合不充分,合金外延生长不明显,形成细小等轴晶,没有明显的择优取向;低速扫描时,在外延生长的作用下,形成粗大的柱状晶组织,沿成形方向形成(001)方向择优取向;在单层两次熔化条件下,柱状晶特性和晶粒的择优取向减弱。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨广宇
汤慧萍
刘楠
贾文鹏
贾亮
杨坤
王建
关键词:  增材制造  粉床型电子束增材制造  钨合金  W-Nb合金    
Abstract: W-3.5Nb alloy was formed by selective electron beam melting (SEBM). Defect and microstructure of W-3.5Nb alloys that were fabricated by different process of low-speed scanning, high-speed scanning and remelting were analyzed. The results show that: lack of fusion and micro-cracks are main defects in SEBMed W-3.5Nb alloys. Low-speed scanning can effectively reduce the content of defects. Lack of fusion defects are caused by the spheroidization and the disturbance of the molten pool. The micro-cracks are mainly caused by shrinkage between dendrites during the solidification process. Due to the different solidification processes of the molten pool at different scanning speeds, W-3.5Nb showed different microstructural. Epitaxial growth is not obvious due to the inadequate fusion under high-speed scanning, leading fine microstructure and not obvious preferred orientation. At low scanning speed, thick columnar crystal structure with (001) preferred orientation along the forming direction is formed by epitaxial growth. At the remelting condition, the columnar crystal and the preferred orientation of the grain are weakened.
Key words:  additive manufacturing    selective electron beam melting    tungsten alloy    W-Nb alloy
                    发布日期:  2021-12-09
ZTFLH:  TG164.4  
基金资助: 科学挑战专题项目(TZ2018006);陕西省重点研发计划项目(2021KW-34)
通讯作者:  yanggy0403@163.com   
作者简介:  杨广宇,西北有色金属研究院,高级工程师。2011年6月硕士毕业于中南大学材料学专,主要从事钛合金、难熔金属材料3D打印技术研究。
引用本文:    
杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
YANG Guangyu, TANG Huiping, LIU Nan, JIA Wenpeng, JIA Liang, YANG Kun, WANG Jian. Defect and Microstructure of W-Nb Alloy Fabricated by Selective Electron Beam Melting. Materials Reports, 2021, 35(z2): 448-451.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/448
1 Butler B G, Paramore J D, Ligda J P, et al. International Journal of Refractory Metals and Hard Materials, 2018, 75, 248.
2 Panayotis S, Hirai T, Barabash V, et al. Fusion Engineering and Design, 2017, 125, 256.
3 Liu D G, Zheng L, Luo L M, et al. Journal of Alloys and Compounds, 2018, 765, 299.
4 殷为宏,汤慧萍. 难熔金属材料与工业应用, 冶金工业出版社, 2012.
5 Xu M Y, Luo L M, Zhou Y F, et al. Fusion Engineering and Design, 2018, 132, 7.
6 Han W, Zhu K, Yan J, et al. Nuclear Materials and Energy, 2020, 23, 100741.
7 Chen J B, Luo L M, Lin J S, et al. Journal of Alloys and Compounds, 2017, 694, 905.
8 Meher P, Kiran C, Patra A, et al. Materials Today: Proceedings, 2019, 18, 765.
9 Ngo T D, Kashani A, Imbalzano, et al. Composites Part B: Engineering, 2018, 143, 172.
10 Gu D, Guo M, Zhang H, et al. International Journal of Extreme Manufacturing, 2020, 2, 025001.
11 Ivekovic A, Omidvari N, Vrancken B, et al. International Journal of Refractory Metals and Hard Materials, 2018, 72, 27.
12 Sidambe A T, Tian Y, Prangnell P B, et al. International Journal of Refractory Metals and Hard Materials, 2019, 78, 254.
13 Wang D, Wang Z, Li K, et al. Materials and Design, 2019, 162, 384.
14 Wrogjt J. Additive manufacturing of tungsten via selective laser melting and electron beam melting. Ph.D. Thesis, The University of Sheffield, England, 2020.
15 Zhou X, Liu X, Zhang D, et al. Journal of Materials Processing Techno-logy, 2015, 222, 33.
16 Schwerdtfeger J, Körner C. Intermetallics, 2014, 49, 29.
17 Jian L, To A C. Additive Manufacturing, 2017, 16, 58
18 Marattukalama J J, Karlssonb D, Pacheco V. Materials and Design, 2020, 193, 108852.
19 胡汉起.金属凝固原理,机械工业出版社,2000.
20 Liu J W, Kou S. Acta Materialia, 2016, 10, 84.
21 https://www.plansee.com/en/materials/tungsten.html.
[1] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[2] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[3] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[4] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[5] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[6] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[7] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[8] 朱兵钺, 林健, 雷永平, 符寒光, 张永强, 程四华. 410马氏体不锈钢块体材料的冷金属过渡焊电弧增材制造与性能表征[J]. 材料导报, 2021, 35(14): 14150-14155.
[9] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[10] 栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
[11] 尹桂丽, 陈岁元, 梁京, 刘常升. 激光直接沉积Fe55/NiCr-Cr3C2复合涂层的组织与性能[J]. 材料导报, 2021, 35(10): 10127-10133.
[12] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[13] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[14] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[15] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed