Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 410-416    
  金属与金属基复合材料 |
激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证
赵金猛1,2,3, 卢林1,2, 王静荣3, 张亮1,2, 吴文恒1,2, 朱冬1,2,3, 郭帅东1,2,3, 肖从越1,2
1 上海3D打印材料工程技术研究中心,上海 200437
2 上海材料研究所,上海 200437
3 上海第二工业大学工学部,上海 201209
Thermodynamic Behavior and Defects of Laser Selective Melting Ti6Al4V at Mesoscopic Scale: Numerical Simulation and Experimental Verification
ZHAO Jinmeng1,2,3, LU Lin1,2, WANG Jingrong3, ZHANG Liang1,2,WU Wenheng1,2, ZHU Dong1,2,3, GUO Shuaidong1,2,3, XIAO Congyue1,2
1 Shanghai Engineer Research Center of 3D Printing Materials, Shanghai 200437, China
2 Shanghai Research Institute of Materials, Shanghai 200437, China
3 College of Engineering,Shaghai Polytechnic University,Shanghai 201209, China
下载:  全 文 ( PDF ) ( 5248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作基于介观尺度激光选区熔化三维Ti6Al4V粉末床模型,研究了激光选区熔化工艺参数对成形件内部冶金缺陷的影响,结果表明:当激光功率从100 W提高到350 W时,熔池的宽度从62.6 μm提高到116.2 μm,深度从24.9 μm提高到32.4 μm。当激光能量不足以穿透粉末层时,熔池中存在未熔颗粒并产生球化现象。当激光功率过高时,金属粉末在充足的能量下发生蒸发,从而产生反冲压力提高了熔体的飞溅能力,导致熔池表面质量下降。根据模拟的工艺制备了成形件并进行了实验,结果中孔隙率与熔池宽度的实验结果与模拟结果相符,表明本工作基于介观尺度的粉末床非连续界面模型可以用于指导工艺参数的选取以及激光选区熔化内部冶金缺陷的控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵金猛
卢林
王静荣
张亮
吴文恒
朱冬
郭帅东
肖从越
关键词:  激光选区熔化(SLM)  Ti6Al4V  介观尺度  数值模拟  工艺参数  冶金缺陷    
Abstract: Based on the three-dimensional Ti6Al4V powder bed model for selective laser melting at mesoscopic scale, the influence of selective laser melting parameters on the internal metallurgical defects of formed parts was studied. With the laser power is increased from 100 W to 350 W, the width of molten pool increases from 62.6 μm to 116.2 μm,the depth increases from 24.9 μm to 32.4 μm. When the laser energy is not enough to penetrate the powder layer, unmelted particles and spheroidization exist in the molten pool. When the laser power is too high, the metal powder will evaporate under sufficient energy, resulting in recoil pressure, which improves splashing ability of the melt and decreases the surface quality of molten pool. According to the simulation process, the forming parts were prepared and tested, the experimental results of porosity and molten pool width are consistent with the simulation results, which indicates that the discontinuous interface model of powder bed based on mesoscopic scale could be used to guide the selection of process parameters and control metallurgical defects in selective laser melting.
Key words:  selective laser melting(SLM)    Ti6Al4V    mesoscopic scale    numerical simulation    process parameters    metallurgical defects
                    发布日期:  2021-12-09
ZTFLH:  TG111  
  TP391.9  
基金资助: 上海市青年科技英才扬帆计划资助项目(17YF1405400);上海市青年科技启明星计划资助项目(18QB1400600)
通讯作者:  lulinws@163.com   
作者简介:  赵金猛,2021年研究生毕业于上海第二工业大学,学习阶段主要在上海材料研究所、上海3D打印材料工程技术研究中心从事增材制造开发等工作,主要研究方向为钛合金增材制造介观尺度的数值模拟与实验研究。参与研究项目2项。已在材料导报等期刊上发表文章2篇。
卢林,上海材料研究所上海3D打印材料工程技术研究中心总工程师,2016年博士毕业于北京科技大学。主要从事高性能金属粉末制备、喷射成形快速凝固技术、金属3D打印技术等方向的研究。参与包含国家重点基础研究发展计划(973计划)、国家工信部工业强基工程、上海自然科学基金等研究项目8项,主持上海市科技人才计划项目1项。已在Materials Characterization、Journal of Materials Research、金属学报等期刊发表论文17篇,其中SCI收录7篇,EI收录13篇,申请发明专利4项。
引用本文:    
赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
ZHAO Jinmeng, LU Lin, WANG Jingrong, ZHANG Liang,WU Wenheng, ZHU Dong, GUO Shuaidong, XIAO Congyue. Thermodynamic Behavior and Defects of Laser Selective Melting Ti6Al4V at Mesoscopic Scale: Numerical Simulation and Experimental Verification. Materials Reports, 2021, 35(z2): 410-416.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/410
1 Wang S Q, Ma T J, Li W Y, et al. Science & Technology of Welding & Joining, 2016, 22(3), 177.
2 闫雪, 阮雪茜. 航空制造技术, 2016, 59(21), 70.
3 Cain V, Thijs L, Van Humbeeck J, et al. Additive Manufacturing, 2015, 5, 68.
4 Zhao X,Li S,Zhang M,et al. Materials & Design, 2016, 95(4), 21.
5 李勇. GH3536合金选区激光熔化成形行为及高温性能研究. 硕士学位论文, 机械科学研究总院, 2019.
6 陶攀, 李怀学, 许庆彦, 巩水利.铸造, 2017, 66(7), 695.
7 Roberts L ,Wang C J, Esterlein R,et al. International Journal of Machine Tools and Manufacture, 2009, 49(12-13), 916.
8 Li Y, Gu D D. Additive Manufacturing, 2014, 1(4), 99.
9 Gu D D, MaC L, Xia M J, et al.Engineering, 2017, 3(5), 675.
10 Dai K, Shaw L. Acta Materialia, 2005, 53(18), 4743.
11 Panwisawas C, Qiu C, Anderson M J, et al. Computational Materials Science, 2017, 126, 479.
12 Hirt C W, Nichols B D. Journal of Computational Physics, 1981, 39(1), 201.
13 向羽, 张树哲, 李俊峰, 等. 浙江大学学报(工学版), 2019, 53(11), 2102.
[1] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[2] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[3] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[4] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[5] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[8] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[9] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[10] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[11] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[12] 任鑫, 窦春岳, 高志玉, 庄达, 齐鹏涛, 何维. 热处理数值模拟技术的研究进展[J]. 材料导报, 2021, 35(19): 19186-19194.
[13] 王东哲, 秦溶蔓, 孙娜, 杜明远, 腾凌虹, 曹伟伟, 朱波. 陶瓷/纤维复合装甲抗弹丸侵彻性能的试验与数值模拟研究[J]. 材料导报, 2021, 35(18): 18216-18221.
[14] 李英, 李平. 激光熔覆制备抗冲蚀磨损镍基复合涂层的研究进展[J]. 材料导报, 2021, 35(15): 15162-15168.
[15] 尹华伟, 胡传波, 姚鑫, 陈琪雅, 胡雷, 卢增辉. 二维平移法小尺寸KDP单晶生长溶液流动与传质模拟[J]. 材料导报, 2021, 35(12): 12032-12038.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed