Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 417-423    
  金属与金属基复合材料 |
增材制造AlxCoCrFeNi系高熵合金的研究进展
袁碧亮, 李传强, 董勇, 张鹏
广东工业大学材料与能源学院,广州 510006
Research Progress on the Additive Manufactured High Entropy Alloys of AlxCoCrFeNi System
YUAN Biliang, LI Chuanqiang, DONG Yong, ZHANG Peng
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 3193KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,AlxCoCrFeNi系高熵合金因其独特的成分和优异的性能而获得学者们的广泛关注。与传统铸造工艺制备的高熵合金相比,增材制造高熵合金具备生产效率高和力学性能优异的特点,为该系高熵合金的研发和应用带来了广阔的前景。然而,增材制造高熵合金的发展时间较短,亟需对其进行深入的研究和探索。本文对增材制造AlxCoCrFeNi系高熵合金的最新研究进展进行了综述,主要包含粉末制备、打印工艺、组织与性能、应用和展望等方面。首先,介绍了高熵合金的基础知识和增材制造的主流方法;其次,总结了预合金化粉末的常见工艺及粉末的特性;然后,阐述了选区激光熔化法(SLM)、定向能量沉积法(DED)、激光熔覆法等工艺参数,其中包括体积能量密度、激光功率、扫描速度、扫描策略等,同时分析了不同工艺参数下增材制造高熵合金的微观组织特征、力学性能和电化学性能等;最后,指出了现阶段该增材制造高熵合金存在的问题,提出将来的研究重点和方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁碧亮
李传强
董勇
张鹏
关键词:  高熵合金  增材制造  微观组织  力学性能  工艺参数    
Abstract: Recently, more and more researchers pay attention on the research of high entropy alloys (HEAs) of AlxCoCrFeNi system due to their unique composition and excellent performance. When compared with traditional as-cast AlxCoCrFeNi HEAs, the additive manufactured counterparts generally present highly effective production and excellent mechanical properties, promoting their development and application in practice. The latest researches on the additive manufactured AlxCoCrFeNi HEAs, including their preparation of powder, printing process, microstructure and properties, applications and outlooks, are reviewed in this paper. Firstly, the fundamental introduction on the AlxCoCrFeNi HEAs and the common methods of additive manufacture are introduced in detail. Secondly, the pre-alloying powders of AlxCoCrFeNi HEAs and their characteristics are summarized. Thirdly, the printing parameters and the properties of additive manufactured AlxCoCrFeNi HEAs fabricated by the selective laser melting (SLM), directed energy deposition (DED) and laser cladding are discussed to clarify the influence of volume energy density, laser power, scanning velocity and scanning strategies on their properties and the possible defects. Besides, microstructure, mechanical and corrosion properties of additive manufactured AlxCoCrFeNi HEAs are analyzed. Finally, the application prospects of AlxCoCrFeNi HEAs in various fields are summarized, and also the existing problems in current studies, the research emphasis and research direction of research in the future are pointed out.
Key words:  high entropy alloy    additive manufacturing    microstructure    mechanical property    processing parameter
                    发布日期:  2021-12-09
ZTFLH:  TG139  
基金资助: 国家自然科学基金青年基金项目(51801029;51901047)
通讯作者:  cqli13s@alum.imr.ac.cn   
作者简介:  袁碧亮,2019年6月毕业于江西理工大学,获得工学学士学位。现为广东工业大学材料与能源学院硕士研究生,在李传强讲师的指导下进行研究。现阶段主要研究领域为高熵合金增材制造工艺及高熵合金的力学性能与腐蚀性能。
李传强,广东工业大学材料与能源学院讲师、硕士研究生导师。2013年6月本科毕业于东北大学材料学专业,2018年7月博士毕业于东北大学&中国科学院金属研究所,2016—2017年在澳大利亚莫纳什大学进行交流学习。2018年8月以广东工业大学“青年百人”计划入职工作,并先后获得国家自然科学基金青年基金1项、广东省自然科学基金面上项目1项和广州市基础与应用基础研究项目1项。主要从事新型金属材料与成形工艺的研究工作,已发表论文20余篇,包括Scientific Reports、Electrochimica Acta、Materials & Design、Materials Science and Engineering A和Journal of Materials Science & Technology等。
引用本文:    
袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
YUAN Biliang, LI Chuanqiang, DONG Yong, ZHANG Peng. Research Progress on the Additive Manufactured High Entropy Alloys of AlxCoCrFeNi System. Materials Reports, 2021, 35(z2): 417-423.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/417
1 Singh R. Applied welding engineering (third edition), Butterworth-Heinemann, UK, 2020.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Zhang Y, Zuo T T, Tang Z, et al.Progress in Materials Science, 2014, 61, 1.
4 Niu C, Larosa C R, Miao J, et al.Nature Communications, 2018, 9, 1363.
5 Otto F, Dlouhy A, Somsen C, et al.Acta Materialia, 2013, 61(15), 5743.
6 Rao J C, Ocelik V, Vainchtein D, et al.Materials Letters, 2016, 176, 29.
7 Li B Y, Peng K, Hu A P, et al.Transactions of Nonferrous Metals Society of China, 2013, 23(3), 735.
8 贺毅强, 徐虎林, 任昌旭, 等.有色金属工程, 2020, 10(6), 29.
9 Zhang H, Yang Y, Hu K H, et al.Additive Manufacturing, 2020, 34(10), 1199.
10 Nofal M, Alhallaj S, Pan Y.Journal of Manufacturing Processes, 2019, 44, 91.
11 He Q L, Jiang J, Yang X F, et al.Journal of the European Ceramic Society, 2020, 41(1), 1033.
12 Zhang G, Chen H, Yang S B, et al.Journal of the European Ceramic Society, 2018, 38(11), 4014.
13 杨胶溪, 柯华, 崔哲, 等.航空制造技术, 2020, 63(10), 14.
14 Yang S F, Liu Z L, Pi J H.Materials Letters, 2020, 261, 127004.
15 Wang Y, Li R D, Niu P D, et al.Intermetallics, 2020, 120, 106746.
16 Wei M W, Chen S Y, Sun M, et al.Powder Technology, 2020, 367, 724.
17 Neikov O D, Vasilieva G I, Sameljuk A V, et al.Materials Science and Engineering A, 2004, 383(1), 7.
18 陈哲, 陆伟, 严彪.金属功能材料, 2012, 19(3), 51.
19 Lin W C, Chang Y J, Hsu T H, et al.Additive Manufacturing, 2020, 36, 101601.
20 Liang J T, Cheng K C, Chen S H.Journal of Alloys and Compounds, 2019, 803, 484.
21 Zhou S C, Zhang P, Xue Y F, et al.Transactions of Nonferrous Metals Society of China, 2018, 28(5), 939.
22 Yu Y, Xu N N, Zhu S Y, et al.Journal of Materials Science & Technology, 2020, 69, 48.
23 Zhang M N, Zhou X L, Wang D F, et al.Materials Science and Enginee-ring: A, 2019, 743, 773.
24 Peyrouzet F, Hachet D, Soulas R, et al.Jom, 2019, 71(10), 3443.
25 Niu P D, Li R D, Yuan T C, et al.Intermetallics, 2019, 104, 24.
26 Luo S, Gao P, Yu H, et al.Journal of Alloys And Compounds, 2019, 771, 387.
27 Yim D, Sathiyamoorthi P, Hong S J, et al.Journal of Alloys and Compounds, 2019, 781, 389.
28 Gu Z, Xi S Q, Mao P, et al.Surface and Coatings Technology, 2020, 401, 126244.
29 Aramian A, Razavi S M J, Sadeghian Z, et al.Additive Manufacturing, 2020, 33, 101130.
30 Iveković A, Montero-sistiaga M L, Vanmeensel K, et al.International Journal of Refractory Metals and Hard Materials, 2019, 82, 23.
31 Kim J, Wakai A, Moridi A.Journal of Materials Research, 2020, 35(15), 1963.
32 Luo S C, Zhao C Y, Su Y, et al.Additive Manufacturing, 2020, 31.
33 Karimi J, Ma P, Jia Y D, et al.Manufacturing Letters, 2020, 24, 9.
34 Li B, Zhang L, Xu Y, et al.Powder Technology, 2020, 360, 509.
35 Sun Z, Tan X P, Wang C C, et al. Acta Materialia, 2021, 204, 116505.
36 Zhang C C, Feng K, Kokawa H, et al.Materials Science and Engineerin: A, 2020, 789, 139672.
37 Ocelik V, Janssen N, Smith S N, et al.JOM, 2016, 68(7), 1810.
38 Wan H X, Song D D, Shi X L, et al.Journal of Materials Science & Technology, 2021, 60, 197.
39 Dada M, Popoola P, Mathe N, et al.Materials Today: Proceedings, 2020, https://doi.org/10.1016/j.matpr.2020.04.198.
40 Joseph J, Jarvis T, Wu X, et al.Materials Science and Engineering A, 2015, 633, 184.
41 蒋淑英, 林志峰, 许红明.稀有金属, 2018, 42(12), 1241.
42 刘源, 陈敏, 李言祥, 等.稀有金属材料与工程, 2009, 38(9), 1602.
43 Sarswat P K, Sarkar S, Murali A, et al.Applied Surface Science, 2019, 476, 242.
44 Afolabi A E, Popoola O, Popoola A P I, et al.The International Journal of Advanced Manufacturing Technology, 2020, 108(11-12), 3563.
45 张毅勇, 张志彬, 姚雯, 等. 表面技术, 2020, 50(1), 117.
46 Pu G, Lin L, Ran A, et al.Applied Surface Science, 2020, 516, 146129.
47 李鹏德, 吴有智, 张爱军, 等.摩擦学学报, 2017, 37(4), 457.
48 洪丽华, 张华, 唐群华, 等.稀有金属材料与工程, 2015, 44(2), 424.
49 魏耀光, 郭刚, 李静, 等.航空材料学报, 2019, 39(5), 82.
50 谢红波, 刘贵仲, 郭景杰, 等.材料工程, 2016, 44(4), 65.
51 Yan X H, Zhang Y.Scrita Materialia, 2020, 187, 188.
52 Salmi A, Atzeni E, Iuliano L, et al.In: 10th CIRP International Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME). Ischia, 2017, pp. 458.
53 Gao C, Liu Z, Xiao Z, et al.Journal of Alloys and Compounds, 2021, 853.
54 果春焕, 王泽昌, 严家印, 等.工程科学学报, 2020, 42(5), 540.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[6] 侯丽丽, 郭强, 要玉宏, 刘江南. B原子促进高熵合金FCC2相的形成机制[J]. 材料导报, 2021, 35(z2): 381-384.
[7] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[8] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[9] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[10] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[11] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[12] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[13] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[14] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[15] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed