Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 424-427    
  金属与金属基复合材料 |
不同送料工艺对液压支架激光熔覆再制造的影响
曹鹏1, 雷高峰2, 苏成明1, 舒林森3, 石舒婷3, 贾北北1, 田伟红1
1 西安智能再制造研究院有限公司,西安 710016
2 西安北方庆华机电有限公司,西安 710025
3 陕西理工大学机械工程学院,汉中 723001
Influence of Different Feeding Process on Laser Cladding Remanufacturing of Hydraulic Support
CAO Peng1, LEI Gaofeng2, SU Chengming1, SHU Linsen3, SHI Shuting3, JIA Beibei1, TIAN Weihong1
1 Xi'an Research Institute of Intelligent Remanufacturing Co.,Ltd., Xi 'an 710016, China
2 Xi'an North Qinghua Electromechanical Co., Ltd., Xi 'an 710025,China
3 School of Mechanical Engineering, Shaanxi University of Science and Technology, Hanzhong 723001,China
下载:  全 文 ( PDF ) ( 5216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液压支架是煤矿综采系统中的重要设备,环境的复杂性和特殊性对液压支架的使用寿命和性能造成严重威胁,为了提高液压支架立柱的耐磨蚀性能,采用激光熔覆技术对立柱表面进行修复强化处理。本文采用同轴送粉、旁轴送粉和丝材熔覆三种送料工艺,在液压支架立柱表面制备单层和多层的熔覆涂层。对不同送料工艺对应熔覆层力学性能进行分析研究,发现试件的表面硬度大小顺序为:同轴送粉试件>旁轴送粉试件>丝材熔覆试件,并且同轴送粉、旁轴送粉、丝材熔覆获得的涂层硬度分别是基材的2.3倍、2.2倍及2.1倍。使用同轴送粉、旁轴送粉和丝材熔覆技术,均可在柱状27SiMn钢表面得到性能优异的不锈钢熔覆层。通过对三种不同送料工艺下熔覆层进行分析研究,发现同等加工参数下,丝材激光熔覆的综合性能优于粉末激光熔覆,并且在进行大型承载设备修复时,丝材激光熔覆的材料利用率更高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹鹏
雷高峰
苏成明
舒林森
石舒婷
贾北北
田伟红
关键词:  激光熔覆  同轴送粉  丝材熔覆  力学性能    
Abstract: Hydraulic support is an important equipment in fully mechanized coal mining system. Due to the complexity and particularity of the environment, it poses a serious threat to the service life and performance of hydraulic support. In order to improve the wear resistance of hydraulic support column, laser cladding technology is used to repair and strengthen the column surface. In this paper, single layer and multi-layer cladding coatings were prepared on the surface of hydraulic support column by coaxial powder feeding, side shaft powder feeding and wire cladding three feeding process. The mechanical properties of cladding layer with different feeding processes were analyzed. It is found that the order of surface hardness of samples is: coaxial powder feeding sample is larger than side shaft powder feeding sample, and larger than wire cladding sample, and the coating hardness obtained by coaxial powder feeding, side shaft powder feeding and wire cladding is 2.3 times, 2.2 times and 2.1 times of the substrate respectively. The stainless steel cladding layer with excellent properties can be obtained on the surface of column 27SiMn Steel by means of coaxial powder feeding, side axis powder feeding and wire cladding technology. Through the analysis and research of the cladding layer under three different feeding processes, it is found that the comprehensive performance of laser cladding of wire is better than that of powder laser cladding under the same processing parameters. In addition, the utilization rate of laser cladding is higher when repairing large-scale load-bearing equipment.
Key words:  laser cladding    coaxial powder feeding    wire cladding    mechanical properties
                    发布日期:  2021-12-09
ZTFLH:  TG178  
通讯作者:  Kingbei520@126.com   
作者简介:  曹鹏,西安智能再制造研究院有限公司,高级工程师。2002年9月至2009年7月,在长安大学获得材料成型与控制工程学士学位和材料学硕士学位,毕业后从事铸钢件材料的焊接和热处理工作及激光熔覆工艺研究工作。申请国家发明专利及实用新型专利共计15项,其中授权7项。目前研究工作主要围绕再制造领域的激光熔覆技术及所用金属丝材的技术开发及产业化应用工作。
贾北北,西安智能再制造研究院有限公司,工程师,2010年9月至2017年6月在兰州理工大学先进材料及其制备技术专业取得学士学位和硕士研究生学位。研究工作主要围绕国家重点发展的先进金属材料,开展关于先进加工工艺激光熔覆以及组织性能控制的基础理论和应用研究,在国内外学术期刊上发表论文10余篇,申请国家发明专利5项。
引用本文:    
曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
CAO Peng, LEI Gaofeng, SU Chengming, SHU Linsen, SHI Shuting, JIA Beibei, TIAN Weihong. Influence of Different Feeding Process on Laser Cladding Remanufacturing of Hydraulic Support. Materials Reports, 2021, 35(z2): 424-427.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/424
1 段孟杰. 河北煤炭, 2002(5),28.
2 王贤才, 张亚普, 柴蓉霞. 金属热处理, 2020(4),188.
3 徐小华. 等离子熔覆耐磨层的制备及其与摩擦配副的匹配优化研究. 硕士学位论文,中国矿业大学, 2019.
4 郭卫, 菅含含, 柴蓉霞, 等.热加工工艺, 2016, 45(18),1.
5 Podgornik B, Massler O, Kafexhiu F, et al.Tribology International, 2018, 121,333.
6 Sahraoui T, Fenineche N E, Montavon G, et al. Journal of Materials Processing Technology, 2004, 152(1), 43.
7 Tan J C, Looney L, Hashmi M S J. Journal of Materials Processing Technology, 1999, 92,203.
8 邓德伟, 陈蕊, 张洪潮.机械工程学报, 2013, 49(7),106.
9 谢苗, 曹丽平, 田博, 等.机械强度, 2020, 42(1),146.
10 Bhuvanesh K M, Sathiya P.Thin-Walled Structures, 2021, 159,107228.
11 Aziz N A, Adnan N A A, Wahab D A, et al.Journal of Cleaner Production, 2021,126401.
12 董冬梅, 陈菊芳, 雷卫宁. 热加工工艺, 2017, 46(16),9.
13 Schmidt M, Merklein M, Bourell D, et al.CIRP Annals, 2017, 66(2), 561.
14 Hofmann D C, Roberts S, Otis R, et al.Scientific Reports, 2014, 4(1), 1.
15 Ding D, Pan Z, Cuiuri D, et al.International Journal of Advanced Manufacturing Technology, 2015, 81.
16 Herzog D, Seyda V, Wycisk E, et al.Acta Materialia, 2016, 117, 371.
17 Vilar R.Journal of laser applications, 1999, 11(2),64.
18 Schneider M F. Enschede, Universiteit Twente, 1998.
19 郭卫, 李凯凯, 柴蓉霞, 等. 应用激光, 2018, 38(3), 351.
20 杨庆东, 苏伦昌, 董春春, 等.中国表面工程, 2013, 26(6),42.
21 柴蓉霞, 李凯凯, 郭卫, 等.金属热处理, 2018, 43(8),136.
22 王义猛. 热加工工艺, 2018(18), 137.
23 崔陆军, 郭强, 郭士锐, 等.热加工工艺, 2018, 47(24),135.
24 王婷玥, 邢书明, 敖晓辉, 等. 材料导报, 2020, 34(6),138.
25 武永寿, 梁景恒, 韩晓辉, 等.兵器材料科学与工程, 2020, 43(1), 87.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[7] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[8] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[9] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[10] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[11] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[12] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[13] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[14] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[15] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed