Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 176-182    
  无机非金属及其复合材料 |
碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定
杨树桐1,2, 李琳桢1, 于淼1
1 中国海洋大学工程学院,青岛 266100
2 青岛理工大学蓝色经济区工程建设与安全协同创新中心,青岛 266033
Production and Tensile Strength Determination of Alkali-activated Sea Sand Recycled Aggregate Concrete
YANG Shutong1,2, LI Linzhen1, YU Miao1
1 College of Engineering, Ocean University of China, Qingdao 266100, China
2 Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, China
下载:  全 文 ( PDF ) ( 3924KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥生产过程中排放大量的二氧化碳,严重污染环境;天然砂石资源日益紧缺;工业废料(如矿渣、粉煤灰)的大量排放以及大批老旧建筑物拆除产生的建筑垃圾均给生态环境带来了巨大的压力。鉴于此,利用矿粉和粉煤灰,通过碱激发技术激发其胶凝活性,完全替代水泥,同时将建筑垃圾破碎成骨料完全替代普通石子,并用海水和海砂拌和,通过确定合理配合比,制备一种新型碱激发海砂再生骨料混凝土。同时,考虑到该新型混凝土未来在海洋工程中的应用,对其抗拉性能的合理评估尤为关键。但由于材料的不均匀性和内部多缺陷等特征,采用传统方法无法得到其真实拉伸强度。因此,利用基于边界效应的非线性断裂理论,通过引入反映材料非均匀性与非连续性的参数,建立了极限荷载与真实拉伸强度之间的线性方程。利用该方程,只需试验中测得极限荷载,即可方便地确定混凝土真实无尺寸效应的拉伸强度和断裂韧度,进而结合正态分布分析确定了两断裂参数的均值以及具有95%保证率的上下限取值。此外,与普通混凝土不同,碱激发海砂再生骨料混凝土断裂面内80%以上的再生粗骨料被拉断。因此,该新型混凝土抗拉性能主要取决于碱激发浆体与再生粗骨料的拉伸强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨树桐
李琳桢
于淼
关键词:  碱激发胶凝材料  海砂  再生骨料  拉伸强度  非线性断裂力学  边界效应    
Abstract: Much CO2 emission during the cement production pollutes the environment significantly. The resource of natural sands and stones becomes scarcer. Large amounts of industrial waste (slag and fly ash) and construction and demolition waste give huge pressure on environment. Thus, the intention of this paper is to produce a new type of concrete, i.e., alkali-activated sea sand recycled aggregate concrete (AASRAC), by using seawater, sea sand, alkali-activated ground granulated blast furnace slag and fly ash instead of cement, and crushed demolition waste instead of natural stones. It is then essential to evaluate the tensile resistance of the new concrete considering its future application in ocean engineering. But it is too difficult to obtain the true tensile strength based on the conventional method due to the non-uniformity and micro-defects in the materials. Based on the boundary effect model in non-linear fracture mechanics, a linear equation of peak load with respected to the true tensile strength is then derived by incorporating the parameters reflecting the material heterogeneity and discontinuity. The size-independent tensile strength and fracture toughness can be predicted by using the linear equation only if the peak load is determined from the test. Subsequently, the means, upper and lower limits of two fracture parameters with 95% reliability are determined based on the normal distribution analysis. Moreover, different from ordinary concrete, the failure mode of AASRAC is more than 80% of the recycled coarse aggregates fractured. Thus, the tensile resistance of the new concrete depends on the tensile strength of alkali-activated mortar and recycled coarse aggregates.
Key words:  alkali-activated material    sea sand    recycled aggregate    tensile strength    non-linear fracture mechanics    boundary effect
                    发布日期:  2021-12-09
ZTFLH:  TU501  
基金资助: 国家自然科学基金(51778591)
通讯作者:  shutongyang2013@163.com   
作者简介:  杨树桐,中国海洋大学教授、博士研究生导师。2008年10月于大连理工大学结构工程专业获博士学位。2009年10月在中国海洋大学工程学院土木工程系任教至今。研究方向主要为混凝土断裂力学、混凝土结构加固与锚固理论及工程应用、建筑固废资源化等。目前以第一及通讯作者在国内外土木类知名学术期刊发表论文30余篇,以第一完成人授权国家发明专利、实用新型专利等八项。获省部级、市厅级科技进步奖两项。作为主持人,承担国家自然科学基金项目四项、山东省重点基金项目及重点研发项目两项、青岛市科技计划项目两项等。
引用本文:    
杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
YANG Shutong, LI Linzhen, YU Miao. Production and Tensile Strength Determination of Alkali-activated Sea Sand Recycled Aggregate Concrete. Materials Reports, 2021, 35(z2): 176-182.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/176
1 Ali M B, Saidur R, Hossain M S.Renewable and Sustainable Energy Reviews, 2011, 15 (5), 2252.
2 Shi C J, Qian J S.Resources, Conservation and Recycling, 2000, 29, 195.
3 彭武磊. 碱激发再生混凝土力学与微观性能研究及配合比设计. 硕士学位论文,深圳大学,2016.
4 Chi M.Journal of Marine Science and Technology, 2016, 23(5), 958.
5 Douglas E, Bilodeau A, Malhotra V M. ACI Materials Journal, 1992, 89(5), 509.
6 Collins F G, Sanjayan J G.Cement and Concrete Research, 1999, 29(3), 455.
7 Xie J H, Wang J J, Rao R, et al. Composites Part B, 2019, 164, 179.
8 Xie J H, Wang J J, Zhang B X, et al.Construction and Building Mate-rials, 2019, 204, 384.
9 Lee N K, Abate S Y, Kim H.Construction and Building Materials, 2018, 159, 286.
10 Abdollahnejad Z, Mastali M, Falah M, et al.Materials, 2019, 12(23), 4016.
11 Sedaghatdoost A, Behfarnia K, Bayati M, et al.Journal of Building Engineering, 2019, 26, 100871.
12 Kathirvel P, Kaliyaperumal S R M.Construction and Building Materials, 2016, 102, 51.
13 Shi X S, Collins F G, Zhao X L, et al.Journal of Hazardous Materials, 2012, 237, 20.
14 Wang J J, Xie J H, Wang C H, et al.Construction and Building Mate-rials, 2020, 247, 118540.
15 Ren X, Zhang L Y.Construction and Building Materials, 2018, 167, 749.
16 Xiao J Z, Zhang Q T, Zhang P, et al. Structural Concrete. 2019, 20,1631.
17 肖建庄,张鹏,张青天,等.建筑科学与工程学报, 2018, 35(2), 16.
18 Etxeberria M, Gonzalez-Corominas A, Pardo P.Construction and Building Materials, 2016, 115, 496.
19 Etxeberria M, Gonzalez-Corominas A. International Journal of Civil Engineering, 2018, 16, 993.
20 ASTM D1141-98,Standard practice for the preparation of substitute ocean water, ASTM International, West Conshohocken, PA, 2008.
21 Yang S T, Xu J J, Zang C H, et al. Construction and Building Materials, 2019, 196, 395.
22 中华人民共和国住房和城乡建设部.GB/T 50081-2019,混凝土物理力学性能试验方法标准,中国建筑工业出版社,2019.
23 Han X, Chen Y, Hu X, et al. Engineering Fracture Mechanics, 2019, 216, 106482.
24 Chen Y, Han X, Hu X, et al. Engineering Fracture Mechanics, 2020, 235, 107134.
25 Li T, Xiao J Z, Zhang Y M, et al. Cement and Concrete Composites, 2019, 104, 103353.
26 Ding Y,Dai J G, Shi C J. Construction and Building Materials, 2018, 165, 310.
[1] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5): 5053-5061.
[2] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[3] 陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177.
[4] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[5] 孙道胜, 李泽英, 刘开伟, 王爱国, 黄伟, 张高展. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033.
[6] 孙道胜, 许婉钰, 刘开伟, 欧阳金至, 王爱国. MICP在建筑领域中的应用进展[J]. 材料导报, 2021, 35(11): 11083-11090.
[7] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[8] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[9] 李太行, 戚承志, 王晓娇, 周理安. 再生建筑骨料添加对城墙土体抗渗性的影响[J]. 材料导报, 2020, 34(Z1): 220-223.
[10] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[11] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[12] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[13] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[14] 梁双强, 陈革, 周其洪, FrankKo. 含缺陷三维编织复合材料拉伸性能试验[J]. 材料导报, 2020, 34(14): 14209-14213.
[15] 张吴欣, 李志恒, 周梅琳, 尹玉, 刘凌云. T-ZnOw/硅橡胶复合材料的非线性电导特性研究[J]. 材料导报, 2020, 34(12): 12169-12172.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed