Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 83-86    
  无机非金属及其复合材料 |
利用维生素C和茶多酚还原氧化石墨烯及其表征
黄绪德, 刘欣
山东科技大材料科学与工程学院,青岛 266000
Reduction of Graphene Oxide with Vitamin C and Tea Polyphenols and Its Characterization
HUANG Xude, LIU Xin
School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266000, China
下载:  全 文 ( PDF ) ( 2896KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用改进的Hummers法制备氧化石墨烯(Graphene oxide,GO),以环境友好和具有较强还原能力的茶多酚和维生素C为还原剂还原GO制备还原氧化石墨烯(Reduced graphene oxide,RGO)。傅里叶变换红外光谱(FT-IR)测得还原后的RGO的含氧官能团吸收峰明显降低,在X射线衍射图谱(XRD)中观察到还原后的RGO的吸收峰位置的变化,原子力显微镜(AFM)观察到样品的厚度。这些表征数据表明实验采用的两种还原剂成功还原了GO制备出RGO。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄绪德
刘欣
关键词:  氧化石墨烯  维生素C  茶多酚  还原氧化石墨烯    
Abstract: In this paper, graphene oxide (GO) was prepared by the modified Hummer method,reduced graphene oxide (RGO) was prepared by reducing GO with strong reducing ability and environment-friendly vitamin C and tea polyphenols as reducing agents. Fourier transform infrared spectroscopy (FT-IR) showed that the absorption peak of the oxygen-containing functional group of the reduced RGO was significantly reduced,and X-ray diffraction (XRD) pattern observed the change of the absorption peak position of GRO after reduction. The thickness of the sample was observed by atomic force microscopy (AFM). These characterization data indicate that the two reducing agents used in the experiment successfully reduced GO to produce RGO.
Key words:  graphene oxide    vitamin C    tea polyphenols    reduced graphene oxide
                    发布日期:  2021-07-16
ZTFLH:  O613  
通讯作者:  liuxin720520@163.com   
作者简介:  黄绪德,2017年6月于山东科技大学获得工学学士学位,2017年到现在在山东科技大学攻取硕士学位。硕士期间主要研究Hummers制备氧化石墨烯以及水热法制备石墨烯水凝胶。刘欣,山东科技大学副教授。1995年6月于青岛科技大学获得工学学士学位,2003年3月,于上海交通大学获得材料学博士学位。以第一作者在国内外学术期刊上发表论文20余篇,申请国家发明专利14项,其中授权11项。研究方向主要为聚合物加工与改性、聚合物基复合材料。
引用本文:    
黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
HUANG Xude, LIU Xin. Reduction of Graphene Oxide with Vitamin C and Tea Polyphenols and Its Characterization. Materials Reports, 2021, 35(Z1): 83-86.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/83
1 Novoselov K S, et al. Nature, 2012, 490(7419), 192.
2 许士才.石墨烯的制备表征及光电性质应用研究. 硕士学位论文,山东师范大学,2014.
3 Sourav S, et al. Materials Research Bulletin, 2016, 79, 41.
4 Lange P, et al. The Journal of Physical Chemistry C, 2011, 115(46), 23057.
5 Keun S K, et al.Nature, 2009, 457(7230), 706.
6 Reina A,et al.Nano Letters,2009, 9(1), 30.
7 Wang Y, et al. ACS Applied Materials & Interfaces, 2011,3(4),1127.
8 De S, et al.Carbon, 2017,119,190.
9 Paredes J I, et al.Journal of Materials Chemistry, 2011, 21,298.
10 Kumar S R, et al.Der Pharma Chemica, 2013,5(3),8.
11 Svirbely J L, et al. Biochemical Journal, 1933, 27(1), 279.
12 张明慧,魏先福,等.北京印刷学院学报,2016,24(2), 75.
13 赵佳楠. 还原剂对生物大分子活性影响的定量评估及氧化损伤修复可能性的探讨.硕士学位论文,大连医科大学,2018.
14 Davies D A, et al. Free Radical Biology & Medicine,1991,14(1),38.
15 Markos G K,et al. Nutrients, 2020, 12(2),292.
16 Shu M T, et al.European Journal of Radiology, 2019, 117, 69.
17 Douglas R M, Hemilä H, Chalker E B, et al.The Cochrane Database of Systematic Reviews, 2007,18(3),CD000980.
18 Zulhelmi I. Carbon Letters, 2020, 30(4), 449
[1] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[4] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[5] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[6] 魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
[7] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[8] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[9] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[10] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[11] 肖帅, 王振飞, 张萍, 何岗, 洪建和. 还原氧化石墨烯/碳纸空气电极的电化学制备及性能[J]. 材料导报, 2020, 34(20): 20005-20009.
[12] 姚庆达, 温会涛, 杨长凯, 梁永贤, 王小卓, 但卫华. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[15] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed