Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15183-15188    https://doi.org/10.11896/cldb.20050259
  金属与金属基复合材料 |
新能源汽车对无取向硅钢的技术挑战
樊立峰1, 秦美美1, 岳尔斌2, 肖丽俊3, 何建中4
1 内蒙古工业大学材料科学与工程学院,呼和浩特 010051
2 江苏冶金技术研究院,张家港 215600
3 钢铁研究总院,北京 100081
4 内蒙古包钢钢联股份有限公司,包头 014010
Technological Challenges of New Energy Vehicle to Non-oriented Silicon Steel
FAN Lifeng1, QIN Meimei1, Yue Erbin2, XIAO Lijun3, HE Jianzhong4
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 JiangSu Metallurgical Technology Research Institute,Zhangjiagang 215600, China
3 Central Iron and Steel Research Institute, Beijing 100081, China
4 Inner Mongolia Baotou Steel Union Co., Ltd., Baotou 014010, China
下载:  全 文 ( PDF ) ( 2708KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环保与能源问题对汽车工业的可持续发展提出了严峻的挑战。在不可再生资源日益紧张的情况下,发展新能源汽车可以减少国家石油资源消耗,削减车辆运行阶段大气污染物的排放,对调整能源结构、改善城市空气质量,保障人群健康均有重要意义。新能源汽车是低碳经济的必然选择,代表汽车产业的发展趋势。
无取向硅钢是汽车驱动电机的核心材料之一。新能源汽车驱动电机最大转速由每分钟几千转提高到几万转甚至高达20万转,工作频率由50 Hz提高到数百数千赫兹,这就要求材料在高频下必须具有低铁损;驱动电机启动、加速时要有高的扭矩,即材料必须具有高的磁感应强度;还要满足驱动电机反复启动和刹车要求,即材料应具有高强度。因此,新能源汽车用无取向硅钢的硬核指标为“高磁感(High magnetic induction)、高频低铁损(High-frequency low-iron loss)、高强度(High strength)”,简称H3技术。研究表明,普通无取向硅钢铁损值在400 Hz下较工频下增加20倍以上,因此普通无取向硅钢难以用于新能源汽车。
本文针对新能源汽车驱动电机H3技术要求,探讨了微细夹杂物、晶粒尺寸、冷轧压下率等参数对无取向硅钢高频磁性能的影响机理及控制策略,阐述了新能源汽车驱动电机用无取向硅钢的最新研究进展与生产现状,提出了制造新能源汽车驱动电机用无取向硅钢的关键科学问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊立峰
秦美美
岳尔斌
肖丽俊
何建中
关键词:  组织  织构  微细夹杂物  超薄高牌号无取向硅钢  新能源汽车    
Abstract: The problems of environmental protection and energy-saving put forward real challenges to the sustainable development of automotive industry. Under the condition of non-renewable resources is increasingly nervous currently,the development of new energy vehicle becomes the important way of energy saving and emission reduction, not only can reduce the oil consumption, but also cut down the total amount of the atmospheric pollutants discharged, which is significant to adjust energy structure, improve city air quality and safeguard human health. The new energy vehicle is an inevitable choice for low-carbon economy, which shows Auto industry developing trends.
Non-oriented silicon steel is one of the core materials of driving Motor. The motor maximum RPM of new energy vehicle is raised from thousands of revolutions a minute to tens of thousands, even up to 200 000 r/min, the working frequency is raised from 50 Hz to hundreds to thousands Hz accordingly,which demand materials have low iron loss at high frequency. The materials must have the high magnetic induction to provide higher torque output when the vehicle starting and accelerating. Meanwhile, the materials must have the high strength to satisfy requirements of vehicle starting and braking numerous times. High-frequency low-iron loss, high magnetic induction and high strength are the hardcore indicators of non-oriented silicon steel for driving motor of new energy vehicle (H3 technology for short). Research shows that the iron loss of ordinary non-oriented silicon steel in 400 Hz increases nearly 20 times than that in 50 Hz, so it hard to meet the new energy vehicle.
According to H3 Technology requirements, the impact mechanism of microinclusion, grain size, cold reduction ratio on high frequency magnetic properties was discussed in this paper. Furthermore, the latest research development and current production situation of non-oriented silicon steel for driving motor of new energy vehicle were revealed. Finally, the key scientific problems on manufacturing technology of non-oriented silicon steel for driving motor of new energy vehicle were put forward.
Key words:  microstructure    texture    microinclusion    ultra-thin high grade non-oriented silicon steel    new energy vehicle
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TG21  
基金资助: 国家自然科学基金项目(51661026);轧制技术及连轧自动化国家重点实验室课题(2019-KF-25-09);内蒙古自然科学基金项目(2020MS05006);内蒙古关键技术攻关计划(2020GG0265)
作者简介:  樊立峰,内蒙古工业大学材料科学与工程学院副教授。2014年毕业于钢铁研究总院,获钢铁冶金博士学位,主要从事硅钢组织、织构控制理论研究,相关研究成果授权国家发明专利10项,发表学术论文40余篇,获内蒙古自治区科技进步二等奖1项。
引用本文:    
樊立峰, 秦美美, 岳尔斌, 肖丽俊, 何建中. 新能源汽车对无取向硅钢的技术挑战[J]. 材料导报, 2021, 35(15): 15183-15188.
FAN Lifeng, QIN Meimei, Yue Erbin, XIAO Lijun, HE Jianzhong. Technological Challenges of New Energy Vehicle to Non-oriented Silicon Steel. Materials Reports, 2021, 35(15): 15183-15188.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050259  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15183
1 Zuo S Q, Zhao S J, Zhu Y Y. Economic Review,2020(1),113(in Chinese).
左世全,赵世佳,祝月艳.经济纵横,2020(1),113.
2 Lu J. Modern Business.2013(34),87(in Chinese).
卢静.现代商业,2013(34),87.
3 Wang Q Y, Wang J. Journal of Industrial Technological Economics,2021,40(8),142(in Chinese).
王琴英,王杰.工业技术经济,2021,40(8),142.
4 Popescu M, Ional D M, Boglietti A, et al. IEEE Transactions on Industry Applications,2010,46,1389.
5 O’Reilly M, Pleydell-Pearce C, Sackett E, et al. IEEE Transactions on Magnetics,2019,55,1.
6 Beltrán J S, Rodríguez A S, Castañeda E G, et al. Journal of Magnetism and Magnetic Materials,2016,406,159.
7 Ibrahim M N, Sergeant P, Rashad E M. IEEE Transactions on Magne-tics,2015,51,1.
8 Pei R L, Zeng L B, Gao L Y. In:2018 21st International Conference on Electrical Machines and Systems. Jeju, Korea,2018,pp. 2715.
9 Bertotti G. IEEE Transactions on Magnetics,1988,24,621.
10 He Z Z, Zhao Y, Luo H W. Electrical steel, Metallurgical Industry Press, China,2012(in Chinese).
何忠治,赵宇,罗海文.电工钢,冶金工业出版社,2012.
11 Vo A T, Fassenet M, Arbenz L, et al. European Physical Journal Applied Physics,2019,85,1.
12 Wang L T, Xia X L, Shi L F. Journal of Anhui University of Technology(Natural Science),2017,34(2),120(in Chinese).
王立涛,夏雪兰,施立发.安徽工业大学学报(自然科学版),2017,34(2),120.
13 De Campos M F, Yonamine T, Fukuhara M, et al. IEEE Transactions on Magnetics,2006,42,2812.
14 Kubota T. Steel Research International,2005,76(6),464.
15 Tanaka I, Yashiki H. Supplemental Proceedings: Volume 1: Materials Processing and Energy Materials TMS (Minerals, Metals & Materials Society). Japan,2011,pp. 339.
16 Ueno S, Enokizono M, Mori Y, et al. IEEE Transactions on Magnetics,2017,53,1.
17 Gong J, Luo H W. Journal of Materials Engineering,2015,43(6),102(in Chinese).
龚坚,罗海文.材料工程,2015,43(6),102.
18 Yu L, Luo H W. Acta Metallurgica Sinica,2020,56(3),291(in Chinese).
于雷,罗海文.金属学报,2020,56(3),291.
19 Zhang B, Liang Y F, Wen S B, et al. Journal of Magnetism and Magne-tic Materials,2019,474,51.
20 Cold rolled non-oriented electrical steel for new energy vehicles. Beijing Shougang Co., Ltd. China,2017(in Chinese).
新能源汽车用无取向电工钢产品手册.北京首钢股份有限公司,2017.
21 Cold rolled non-oriented electrical steel. Baoshan Iron and Steel Co., Ltd. China,2018(in Chinese).
冷轧无取向电工钢手册.宝山钢铁股份有限公司,2018.
22 Wang A H. Steel Rolling,2011,28(4),42(in Chinese).
王爱华.轧钢,2011,28(4),42.
23 Gao Z Y, Ma Y L,Chen C M, et al. Angang Technology,2014(4),11(in Chinese).
高振宇,马云龙,陈春梅,等.鞍钢技术,2014(4),11.
24 Bae B K, Woo J S, Kim J K. Journal of Magnetism and Magnetic Mate-rials,2003,254-255,373.
25 Bóc I, Cziráki , Gróf T, et al. Journal of Magnetism & Magnetic Mate-rials,1990,83,381.
26 Wang J Y, Ren Q, Luo Y, et al. Journal of Magnetism and Magnetic Materials,2018(451),454.
27 Xu F F, Cheng S S. Metallurgical Equipment,2016(2),19(in Chinese).
续飞飞,程树森.冶金设备,2016(2),19.
28 He C X,Tu Y C, Meng L, et al. Materials Reports,2019,33(Z1),102(in Chinese).
何承绪,涂蕴超,孟利,等.材料导报,2019,33(Z1),102.
29 He Z J, Shi L F, Xia X L. Anhui Metallurgy,2018(2),16(in Chinese).
何志坚,施立发,夏雪兰.安徽冶金,2018(2),16.
30 Sha Y H, Sun C, Zhang F, et al. Acta Materialia,2014,76,106.
31 Liu J L, Sha Y H, Zhang F, et al. Scripta Materialia,2011,65,292.
32 Jiao H T, Xu Y B, Xiong W, et al. Materials & Design,2017,136,23.
33 Yang H P, Sha Y H, Zhang F, et al. Journal of Northeastern University(Natural Science),2013(5),53(in Chinese).
杨换平,沙玉辉,张芳,等.东北大学学报(自然科学版),2013(5),53.
34 Sun C, Sha Y H, Zhang F, et al. Journal of Northeastern University (Natural Science),2016,37(9),1311(in Chinese).
孙超,沙玉辉,张芳,等.东北大学学报(自然科学版),2016,37(9),1311.
35 Liu J L, Sha Y H, Shao G S, et al. Journal of Northeastern University(Natural Science).2017,38(5),645(in Chinese).
柳金龙,沙玉辉,邵光帅,等.东北大学学报(自然科学版),2017,38(5),645.
36 Chu S J, Shen K Y, Sha Y H, et al. Journal of Materials Engineering,2019,47(8),147(in Chinese).
储双杰,沈侃毅,沙玉辉,等.材料工程,2019,47(8),147.
37 Zhang Y X, Lan M F, Wang Y, et al. Materials Characterization,2019,150,118.
38 Zhu X. Study on deformation and recrystallization texture in heavily rolled nonoriented silicon steel. Master’s Thesis, Northeastern University, China,2012(in Chinese).
朱旭.大变形量下无取向硅钢形变和再结晶织构研究.硕士学位论文,东北大学,2012.
39 Liang R Y, Yang P, Mao W M. Acta Metallurgica Sinica(English Letters),2017,9,89.
40 Zhang N, Yang P, He C X, et al. ISIJ International,2016,56,1462.
41 Gobernado P, Petrov R, Ruiz D, et al. Advanced Engineering Materials,2010,12,1077.
42 Hutchinson W B. International Metals Reviews,1984,29,25.
43 Qin J, Yang J F, Zhang Y H, et al. Materials Letters,2020,259,1.
44 Yasuda M, Kataoka T, Ushigami Y, et al. ISIJ International,2018,58,1893.
45 Quadir M Z, Duggan B J. Acta Materialia,2004,52,4011.
46 Kang C G, Kang H G, Kim H C, et al. Journal of Materials Processing Technology,2007,187-188,542.
47 Mao W M. Crystallographic texture and anisotropy of metallic materials, Science Press, China, 2002(in Chinese).
毛卫民.金属材料的晶体学织构与各向异性,科学出版社,2002.
48 Xie L, He M T, Sun L Y, et al. Materials Letters,2020,258,1.
49 Stoecker A, Leuning N, Hameyer K, et al. Journal of Magnetism and Magnetic Materials,2020,501,1.
50 Paolinelli S C, Cunha M A D. Journal of Magnetism and Magnetic Materials,2006,304,596.
51 Gao J, He C X, Yang F Y, et al. Heat Treatment of Metals,2019,44(8),59(in Chinese).
高洁,何承绪,杨富尧,等.金属热处理,2019,44(8),59.
52 Zhang N, Yang P, Mao W M. Journal of Magnetism and Magnetic Materials,2016,397,125.
53 Qin J, Liu D F, Yue Y, et al. Journal of Iron & Steel Research International,2019,26,1219.
54 Fan L F, Zhu R, He J Z, et al. ISIJ International,2018,12,2348.
55 Fan L F, Li S, Xiao L J, et al. Metallurgical Research & Technology,2019,116,1.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[3] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[4] 王书明, 张华, 左玉婷, 曹瑞军. 钴的相变织构及微观结构研究[J]. 材料导报, 2021, 35(Z1): 378-380.
[5] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[6] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[7] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[8] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[9] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[10] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[11] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[12] 朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
[13] 刘晓欢, 李彦生, 满意, 王金辉, 徐瑞. 高压扭转制备的Mg-Sm-Ca合金组织演变及时效硬化行为[J]. 材料导报, 2021, 35(6): 6120-6125.
[14] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[15] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed