Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 78-83    
  无机非金属及其复合材料 |
新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究
刘畅1,2, 丁博1,2, 杨贤峰1,2, 叶瑞雪1,2, 季益龙1,2, 代兵1,2, 吕辉鸿1,2
1 安徽工业大学冶金减排与资源综合利用教育部重点实验室,马鞍山 243002
2 安徽工业大学冶金工程与资源综合利用安徽省重点实验室,马鞍山 243002
Synthesis of Novel FeWO4@ZnS Heterostructure Microsphere and Its Photodegradation Activity for Tetracycline and Methylene Blue
LIU Chang1,2, DING Bo1,2, YANG Xianfeng1,2, YE Ruixue1,2, JI Yilong1,2, DAI Bing1,2, LYU Huihong1,2
1 Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Ministry of Education,Anhui University of Technology, Maanshan 243002, China
2 Anhui Provincial Key Lab of Metallurgical Engineering & Resources Recycling, Anhui University of Technology, Maanshan 243002, China
下载:  全 文 ( PDF ) ( 7934KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化作为一种新兴的高级氧化技术,在环境净化领域有着诸多优势。采用两步简易的水热法制备了新型的FeWO4@ZnS异质结微球,SEM和XRD分析结果表明,ZnS微球是由硫化锌纳米颗粒组装而成的。EDS元素映射图表明,FeWO4纳米粒子均匀地负载在ZnS微球表面。以新兴污染物四环素和偶氮染料亚甲基蓝为模型污染物,评价了各样品在模拟太阳光、可见光和可见光-芬顿体系中的光催化性能。结果表明,与单独的样品相比,异质结微球在模拟太阳光、可见光和光芬顿体系中对亚甲基蓝(MB)和四环素(TC)均表现出较高的降解活性。光催化性能的提高可以归因于异质结构的存在,其抑制了光生电子和空穴对的复合,加速了光生载流子的界面转移。除此之外,本研究还提出了上述各体系中光催化活性提高的可能的电子转移机理。新型高效FeWO4@ZnS异质结催化剂在未来环境净化领域具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘畅
丁博
杨贤峰
叶瑞雪
季益龙
代兵
吕辉鸿
关键词:  光催化  FeWO4@ZnS异质结  纳米微球  四环素  亚甲基蓝    
Abstract: Photocatalysis as an emerging advanced oxidation processes have enormous merits in environment purification area. The novel FeWO4@ZnS heterostructure microspheres were fabricated by a two-step hydrothermal method and the analysis of SEM and XRD shown that the ZnS microspheres were assembled by small ZnS nanoparticles. EDS elements mapping shown that the FeWO4 nanoparticles were uniformly loa-ded on the surface of ZnS microspheres. The photocatalytic performance towarding to the azo dye MB and newly-developing TC were conducted in the case of UV-visible light, visible light and photo-Feton system. Results indicated that the heterostructure microspheres exhibits better activity compared with pure samples in three different system. The enhancement of photocatalytic can attributed to the presence of heterostructure which restrains the recombination of photoinduced electrons and holes and accelerates the interface transfer of photogenerated carriers. In addition, the possible electrons transfer mechanism of enhanced photodegradation performance were proposed. This novel and efficiency FeWO4@ZnS heterostructure photocatalyst may possesses potential application in the future environmental purification area.
Key words:  photocatalysis    FeWO4@ZnS heterostructure    microsphere    TC    MB
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  O643  
通讯作者:  lv_huihong@163.com   
作者简介:  刘畅,硕士,师承吕辉鸿教授, 从事环境功能材料制备、改性、表征及在环境科学与工程领域的应用。在读期间以第一作者身份在Materials Letters, Journal of Environmental Chemical Engineering,功能材料等期刊公开发表学术论文四篇,参与国家自然科学基金1项,现就读于武汉理工大学资源与环境工程学院,攻读博士学位。吕辉鸿,安徽工业大学教授、博导,研究方向为新型碳基材料开发及应用、二次资源绿色规模化利用及技术集成、环境化工。主要科研成果包括:建立了3条典型二次资源绿色短流程资源化战略:(1)含钛高炉渣直接构建新型低温高效光热耦合SCR脱硝催化剂;(2)含钛高炉渣直接构建智能道路及建筑结构健康检测用压电胶凝材料;(3)含钛高炉渣低成本制备具有(重金属/有机污染物污染)土壤修复功能复合肥。主持并完成国家自然科学基金2项,安徽省自然科学基金及安徽省教育厅重点项目各1项,产学研项目2项。近年来,在ACS Sustain. Chem. Eng.、Hydrometallurgy及美国冶金会志等学术期刊发表论文10余篇。获授权中国发明专利5项。曾3次应邀在国内学术会议上做学术报告,担任ACS Sustain. Chem. Eng.、Hydrometallurgy等学术期刊的特约审稿人。
引用本文:    
刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
LIU Chang, DING Bo, YANG Xianfeng, YE Ruixue, JI Yilong, DAI Bing, LYU Huihong. Synthesis of Novel FeWO4@ZnS Heterostructure Microsphere and Its Photodegradation Activity for Tetracycline and Methylene Blue. Materials Reports, 2020, 34(Z2): 78-83.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/78
1 Li Zhenlu, Guo Changsheng, Lyu Jianchang, et al.Journal of Hazardous Materials, 2019, 373(5), 85.
2 Zhu Xiangsong, Wang Yujun, Sun Rui, et al. Chemosphere, 2013, 92(8),925.
3 Zarei M, Khataee A R, Ordikhani Seyedl R, et al. Electrochimica Acta, 2010, 55(24), 7259.
4 Lodha B, Chaudhari S. Journal of Hazardous Materials, 2007, 148(1-2), 459.
5 Arslan Alaton I, Gursoy B H, Schmidt J E. Dyes & Pigments, 2008, 78(2), 117.
6 Liu Chang, Lv Huihong, Yu Changlin, et al. Materials Letters, 2019, 257(15), 126707.
7 Eloy I C, Maria D B, Rossinyol E, et al. Electrochimica Acta, 2017, 244(1), 199.
8 Akerd A G, Bahrami S H. Journal of Environmental Chemical Engineering, 2019, 7(5),103283.
9 Guo Liejin, Chen Yubin, Su Jinzhan, et al. Energy, 2019, 172(1), 1079.
10 Ani I J, Akpan U G, Olutoye M A, et al. Journal of Cleaner Production, 2018, 205(20), 930.
11 Qu Ailan, Xie Haolong, Xu Xinmei, et al. Applied Surface Science, 2016, 375(1), 230.
12 Zhang Guping, Chen Dongyun, Li Najun, et al. Applied Catalysis B: Environmental, 2019, 250(5), 313.
13 Low Jingxiang, Yu Jiaguo, Jaroniecj M, et al. Advanced Materials, 2017, 29(20),1601694.
14 Wu Wei, Jiang Changzhong, Roy V A L. Nanoscale, 2014, 7(1), 38.
15 Wang Huanli, Zhang Lisha, Chen Zhigang, et al. Chemical Society Reviews, 2014, 43(15), 5234.
16 Gratzel M. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2), 145.
17 Yu C L, Yu J C, Chan M. Journal of Solid State Chemistry, 2009, 182(5), 1061.
18 Yu J C, Yu Jiaguo, Zhang Lizhi, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148 (1-3),263.
19 Wu Xuanrong, Yang Qiaozhen, Zhao Yongxiang, et al. Journal of Inorganic Materials, 2016,31(5), 312.
20 Zhou Yuxue, Yao Hongbin, Zhang Qiang, et al. Inorganic Chemistry, 2009, 48(3), 1082.
21 Zhang Yiming, Yang Xiaoyan, He Na, et al. Materials Letters, 2018, 228(1), 305.
22 Lee J, Kim Y, Kim J K, et al. Applied Catalysis B: Environmental, 2017, 205(15), 433.
23 Yu Changlin, Zhou Wanqing, Liu Hong, et al. Chemical Engineering Journal, 2016, 287(1), 117.
24 Tao Cai, Liu Yutang, Wang Longlu, et al. Chemical Engineering Journal, 2019, 375(1), 122070.
25 Wang Qiao, Xu Peng, Zhang Guangshan, et al. Applied Surface Science, 2019, 488(15), 360.
26 Chen Zhigang, Ma Huijin, Xia Jiexiang, et al. Ceramics International, 2016, 42(7), 8997.
27 Chen Yaoyao, Ma Yulong, Yang Jin, et al. Chemical Engineering Journal, 2017, 307(1), 15.
[1] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[2] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[3] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[4] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[5] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[6] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[7] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[8] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[9] 张理元, 尤佳, 钟雅洁, 董志红, 韩炎霖, 孙绪兵, 由耀辉1,2,. CTAB对无机沉淀-胶溶法制备介孔层状TiO2结构与性能的影响[J]. 材料导报, 2020, 34(24): 24014-24018.
[10] 王薇, 刘竟成, 霍旺晨, 王均, 王芊卉. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水[J]. 材料导报, 2020, 34(23): 23027-23032.
[11] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[12] 李靖, 刘天宝, 朱亚鑫, 王鹏, 堵锡华, 张永才. 溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051.
[13] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[14] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[15] 乔帅, 赵朝成, 贺凤婷, 赵洪飞, 董培, 林飞飞, 台兆鑫. 原位沉积法制备g-C3N4/Ag3PO4复合光催化剂降解卡马西平的性能研究[J]. 材料导报, 2020, 34(19): 19010-19017.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed