Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 534-538    
  高分子与聚合物基复合材料 |
聚丙烯/乙烯-乙烯醇共聚物中空纤维及其硬弹性行为
罗大军1,2, 秦舒浩2, 伍剑明1, 李杨1, 高进1
1 贵州理工学院材料与冶金工程学院,贵阳 550003
2 国家复合改性聚合物材料工程技术研究中心,贵阳 550014
Polypropylene/Ethylene-vinyl Alcohol Copolymer Hollow Fibers and Its Hard Elastic Behavior
LUO Dajun1,2, QIN Shuhao2, WU Jianming1, LI Yang1, GAO Jin1
1 School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
2 National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
下载:  全 文 ( PDF ) ( 6072KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚丙烯(PP)为基体,乙烯-乙烯醇共聚物(EVOH)为亲水第二相聚合物制备PP/EVOH共混物,通过聚丙烯接枝马来酸酐(PP-g-MAH)改善两相相容性,并结合熔融纺丝技术制备具有硬弹性的亲水PP/EVOH中空纤维。结合水接触角和EDS分别考察EVOH的引入对PP基体及中空纤维亲水性的影响;采用DSC研究EVOH引入后PP/EVOH中空纤维中PP相的结晶行为,进而通过测试PP/EVOH中空纤维的力学性能及弹性回复率等性能,综合研究PP/EVOH中空纤维的硬弹性行为。结果表明,随着EVOH比例增加,PP/EVOH中空纤维表面含氧量最高为5.65%(质量分数),纤维亲水性得到有效改善。PP-g-MAH引入使PP相结晶受阻,导致PP/EVOH中空纤维硬弹性变弱。尽管加入EVOH可以起到异相成核和促进结晶的作用,使PP/EVOH中空纤维仍然具有良好的硬弹性,但仍然弱于纯PP中空纤维。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗大军
秦舒浩
伍剑明
李杨
高进
关键词:  聚丙烯  乙烯-乙烯醇共聚物  中空纤维  硬弹性行为  亲水性    
Abstract: Ethylene-vinyl alcohol copolymer (EVOH) as hydrophilic modification agent and polypropylene-g-maleic anhydride (PP-g-MAH) as a compatibilizer were blended with PP to prepare hydrophilic PP/EVOH hollow fibers with hard elasticity by melt spinning. The effect of EVOH on the hydrophilicity of PP matrix and hollow fibers was investigated by WCA and EDS analysis. The crystallization behavior of PP phase in PP/EVOH hollow fibers after adding EVOH was also analyzed by DSC. In addition, the mechanical properties and elastic recovery of PP/EVOH hollow fibers were tested, and the hard elastic behavior of PP/EVOH hollow fibers was comprehensively analyzed. The results showed that the hydrophilicity of PP/EVOH hollow fibers was effectively improved with the increase of EVOH content, and the maximum surface oxygen content of the fiber was 5.65wt%. After adding PP-g-MAH, the crystallization of the PP phase was hindered, resulting in weakening of the hard elasticity of the PP/EVOH hollow fibers. Although the addition of EVOH can play the role of heterogeneous nucleation and promote crystallization, PP/EVOH hollow fibers still showed good hard elasticity. However, the hard elasticity of PP/EVOH hollow fibers were still lower than that of pure PP hollow fiber.
Key words:  polypropylene    ethylene-vinyl alcohol copolymer    hollow fiber    hard elasticity    hydrophilicity
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TQ325.1+4  
基金资助: 贵州省科技厅计划项目(黔科合LH字[2016]7099;黔科合基础[2019]1134)
通讯作者:  dj_luo@126.com   
作者简介:  罗大军,贵州理工学院副教授。2019年获得贵州大学材料学专业工学博士学位,期间获得博士研究生国家奖学金。以第一作者在Energy、Separation & Purification Technology、 Journal of Materials Science等国际国内学术刊物上发表学术论文10篇,申请国家发明专利6项,其中授权2项。主要从事高分子分离膜材料的制备技术及以应用为目的的分离膜结构调控、性能优化和成膜机理的理论和实验研究工作,以及储能技术的理论和实验研究工作。
引用本文:    
罗大军, 秦舒浩, 伍剑明, 李杨, 高进. 聚丙烯/乙烯-乙烯醇共聚物中空纤维及其硬弹性行为[J]. 材料导报, 2020, 34(Z2): 534-538.
LUO Dajun, QIN Shuhao, WU Jianming, LI Yang, GAO Jin. Polypropylene/Ethylene-vinyl Alcohol Copolymer Hollow Fibers and Its Hard Elastic Behavior. Materials Reports, 2020, 34(Z2): 534-538.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/534
1 徐又一, 徐昌辉, 谢柏明,等.功能材料, 1996, 27(1), 22.
2 徐又一, 徐昌辉, 谢柏明,等. 功能材料, 1996, 27(1), 28.
3 Noether H D.Polymeric Materials, 1979, 7 (1-2), 57.
4 Franco J A, Montigny D D, Kentish S E, et al. Industrial & Engineering Chemistry Research, 2011, 50, 4011.
5 Xiong B J, Chen R, Zeng F X Y, et al. Journal of Membrane Science, 2018, 545, 213.
6 Luo D J, Wei F J, Shao H J, et al. Separation and Purification Technology, 2019, 213, 328.
7 Luo D J, Wei F J, Shao H J, et al. Journal of Membrane Science, 2018, 53, 15500.
8 Celanese Corporation of America. Belgium Patent, BE650890, 1965.
9 Noether H D. U.S Patent, US3513110, 1970.
10 Noether H D, Whitney W.Polymer, 1973, 2, 991.
11 Cayrol B, Petermann W. Polymer Science-Physics, 1974, 12, 2169.
12 Hermann A J. US Patent, US3256258, 1966.
13 张旭, PP/EVOH共混改善聚丙烯亲水性的研究. 硕士学位论文, 大连工业大学, 2011.
14 Luo D J, Shao H J, Wei F J, et al. International Polymer Processing, 2019, 34(2), 195.
15 李新红, 马永梅, 王佛松. 高分子学报, 2005, 1(5), 740.
16 吴宁晶, 杨鹏. 高分子学报,2010(3), 316.
17 Saffar A, Ajji A, Carreau P J, et al. Journal of Membrane Science, 2014, 462(28), 50.
18 Wypych G. In handbook of polymers, Wypych G, Ed., Elsevier, Oxford, 2012.
19 徐又一, 徐昌辉, 谢柏明,等. 功能材料, 1996, 27(1), 12.
[1] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[2] 张楠. P(AN-co-DAC)/mt-PSA共混物的吸湿性研究[J]. 材料导报, 2020, 34(Z1): 548-551.
[3] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[4] 孙美玲, 黄肖容, 王立栋. Cu-Zn/α-Al2O3中空纤维抗菌膜的制备与性能研究[J]. 材料导报, 2020, 34(6): 6024-6028.
[5] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[6] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[7] 牛润萍, 庚立志, 范莹莹. 分离膜在膜液体除湿中的应用进展[J]. 材料导报, 2020, 34(15): 15069-15074.
[8] 林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
[9] 周颖, 郭建兵, 何玮頔, 徐定红, 王蒙. 紫外老化对长玻纤增强聚丙烯复合材料流变性能和非等温结晶动力学的影响[J]. 材料导报, 2020, 34(12): 12146-12151.
[10] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[11] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[12] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[13] 党力, 李宛琴, 吕智慧, 胡杰林, 次旺拉姆, 刘威. 溶液共混法制备碱式硫酸镁晶须/聚丙烯复合材料及其力学性能[J]. 材料导报, 2019, 33(18): 3135-3139.
[14] 黄国庆, 白震媛, 陈兆文, 刘琦, 王君. 铀(Ⅵ)在氧化锌修饰聚丙烯腈纤维上的吸附行为[J]. 材料导报, 2019, 33(14): 2436-2443.
[15] 刘婷, 陈伟东, 鞠红民, 闫淑芳, 张宇欣, 马文. 聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为[J]. 材料导报, 2019, 33(14): 2315-2318.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed