Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 227-232    
  无机非金属及其复合材料 |
混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法
余波1,2,3, 黄俊铭1, 万伟伟1, 杨绿峰1,2,3
1 广西大学土木建筑工程学院,南宁 530004
2 工程防灾与结构安全教育部重点实验室,南宁 530004
3 广西防灾减灾与工程安全重点实验室,南宁 530004
Quantitative Judgment Method for Passivation and Depassivation of Reinforcing Steel Bar in Simulated Concrete Solution
YU Bo1,2,3, HUANG Junming1, WAN Weiwei1, YANG Lyufeng1,2,3
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education, Nanning 530004, China
3 Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning 530004, China
下载:  全 文 ( PDF ) ( 5481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于混凝土模拟液中钢筋的钝化和脱钝试验,系统分析了钢筋钝化和脱钝过程中腐蚀电化学参数的变化规律,研究提出了钢筋钝化和脱钝过程的量化判别方法。首先制备了混凝土模拟液和钢筋电极,然后分别利用饱和甘汞电极和汞/氧化汞电极作为参比电极,通过半电池电位法、电化学阻抗谱法和动电位极化法测试了钢筋钝化和脱钝过程腐蚀电化学参数(包括开路电位、极化电阻和腐蚀电流密度)的变化规律,进而提出了混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法,并确定了混凝土模拟液中钢筋形成钝化膜所需的时间和脱钝的临界氯离子浓度。分析结果表明,在钢筋钝化过程中,当开路电位、极化电阻及腐蚀电流密度随时间的相对变化率降低到10%以内并趋于稳定时,钢筋表面形成稳定的钝化膜,所需时间约为5 d;在钢筋脱钝过程中,当开路电位、极化电阻及腐蚀电流密度随氯离子浓度的相对变化率分别超过30%、50%和150%时,钢筋发生脱钝,对应的临界氯离子浓度约为0.12 mol/L。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余波
黄俊铭
万伟伟
杨绿峰
关键词:  混凝土模拟液  钢筋  钝化  脱钝  量化判别  临界氯离子浓度    
Abstract: Based on the passivation and depassivation experiments of reinforcing steel bar in simulated concrete solution, the corrosion electrochemical parameters of reinforcing steel bar during the passivation and depassivation processes were systematically investigated. Meanwhile, the quantitative judgment method for the passivation and depassivation process of reinforcing steel bar in simulated concrete solution was proposed. Simulated concrete solution and reinforcement electrode were prepared first. Then the variation of corrosion electrochemical parameters (including the open circuit potential, polarization resistance and corrosion current density) of reinforcing steel bar during passivation and depassivation process were tested by means of the half-cell potential method, the electrochemical impedance spectroscopy and the dynamic potential polarization method with the saturated calomel electrode and mercury/oxide mercury electrode as the reference electrode respectively. Finally, the quantitative judgment method for the passivation and depassivation process of reinforcing steel bar in simulated concrete solution was presented, and the critical chloride content of reinforcing steel bars during depassivation process was determined. Analysis results show that it takes about 5 days for reinforcing steel bar to complete the passivation and to form a stable passivation film during the passivation process, when the relative variation rate of open circuit potential, polarization resistance and corrosion current density along with time lower than 10% and tend to be stable. Depassivation of reinforcing steel bar will occur when the relative variation rate of open circuit potential, polarization resistance and corrosion current density along with chloride content greater than 30%, 50% and 150% respectively. The critical chloride content for depassivation of reinforcing steel bar is about 0.12 mol/L in the simulated concrete solution.
Key words:  simulated concrete solution    reinforcing steel bar    passivation    depassivation    quantitative judgment    critical chloride content
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(51668008;51738004;51678165);广西杰出青年科学基金(2019GXNSFFA245004);广西自然科学基金(2018GXNSFAA281344)
通讯作者:  lfyang@gxu.edu.cn   
作者简介:  余波,广西大学土木建筑工程学院,教授,博士研究生导师,广西杰出青年基金和广西青年科技奖获得者。2011年取得广西大学结构工程博士学位,主要从事混凝土结构耐久性定量分析与设计、混凝土结构性能劣化机制与安全评估以及工程结构随机分析与风险评估的研究。杨绿峰,广西大学土木建筑工程学院,教授,博士研究生导师。1998年在武汉工业大学取得结构工程专业博士学位,主要从事混凝土结构耐久性、工程结构承载力设计与优化以及结构可靠度与体系可靠度的研究。
引用本文:    
余波, 黄俊铭, 万伟伟, 杨绿峰. 混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法[J]. 材料导报, 2020, 34(Z2): 227-232.
YU Bo, HUANG Junming, WAN Weiwei, YANG Lyufeng. Quantitative Judgment Method for Passivation and Depassivation of Reinforcing Steel Bar in Simulated Concrete Solution. Materials Reports, 2020, 34(Z2): 227-232.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/227
1 Cao Y, Gehlen C, Angstc U, et al. Cement and Concrete Research, 2019, 117(60), 58.
2 曹楚南.腐蚀电化学原理, 化学工业出版社, 2008.
3 陈海燕, 李欢园, 陈丕茂, 等. 建筑材料学报, 2013, 16(1), 131.
4 何谋杰, 叶跃忠, 李福海. 材料导报:研究篇, 2010, 24(12), 79.
5 王丹芊, 施锦杰, 蒋金伟, 等.东南大学学报(自然科学版), 2015, 45(6), 1163.
6 张俊喜, 易博, 林德源, 等.建筑材料学报, 2016, 19(2), 390.
7 陈龙, 瞿彧, 汤雁冰, 等. 腐蚀与防护, 2014, 35(5), 446.
8 施锦杰, 孙伟, 耿国庆.建筑材料学报, 2011, 14(4), 452.
9 郭丽萍,杨波,陈波,等.水利与建筑工程学报, 2015, 13(6), 16.
10 Wang Y Z, Liu C X, Wang Y C, et al. Construction and Building Mate-rials, 2019, 214, 158.
11 商百慧, 马元泰, 孟美江, 等. 材料研究学报, 2019, 33(9), 659.
12 Zuo X B, Li X N, Liu Z Y, et al.Construction and Building Materials, 2019, 229, 116907.
13 Zheng H B, Dai J G, Li W H, et al. Construction and Building Mate-rials, 2018, 166, 572.
14 王吉会.腐蚀科学与工程试验教程, 北京大学出版社, 2013.
[1] 冯光岩, 金祖权, 熊传胜, 范君峰. 海洋潮汐区暴露700 d带裂缝混凝土中耐蚀钢筋的锈蚀行为[J]. 材料导报, 2020, 34(8): 8064-8070.
[2] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[3] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[4] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[5] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[6] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[7] 陈俊, 张白, 杨鸥, 龙士国, 许福, 杨才千. 黏结长度对锈蚀钢筋与混凝土间黏结性能的影响[J]. 材料导报, 2019, 33(22): 3744-3751.
[8] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[9] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[10] 达波, 余红发, 麻海燕, 吴彰钰. 全珊瑚海水混凝土中不同种类钢筋的防腐蚀性能[J]. 材料导报, 2019, 33(12): 2002-2008.
[11] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[12] 陈俊帆, 赵生盛, 高天, 徐玉增, 张力, 丁毅, 张晓丹, 赵颖, 侯国付. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
[13] 郝立成, 张明, 陈文超, 冯晓东. 高效本征薄层异质结(HIT)太阳电池技术研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 689-695.
[14] 李哲, 金祖权, 邵爽爽, 徐翔波. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
[15] 郑山锁, 裴培, 张艺欣, 董立国, 郑捷, 董方园. 钢筋混凝土粘结滑移研究综述[J]. 材料导报, 2018, 32(23): 4182-4191.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed