Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 297-303    
  金属与金属基复合材料 |
不同温度下纯Ni/NiTi合金的摩擦特性研究
李锐1, 曾令碧2, 刘腾3, 王晓杰1, 杨平安1
1 重庆邮电大学自动化学院,重庆 400065;
2 重庆邮电大学先进制造工程学院,重庆 400065;
3 重庆康佳光电研究院有限公司,重庆 402760
Study on Friction Characteristics of Pure Ni/NiTi Alloy at Different Temperatures
LI Rui1, ZENG Lingbi2, LIU Teng3, WANG Xiaojie1, YANG Ping'an1
1 College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 College of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
3 Chongqing Konka Optoelectronics Research Institute Co., Ltd., Chongqing 402760, China
下载:  全 文 ( PDF ) ( 11404KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 NiTi合金具有形状记忆效应及超弹性特性,使得它与其他一般材料的摩擦特性有很大不同。为从微观角度揭示其摩擦特性,利用分子动力学研究了不同温度下纯Ni和NiTi合金的压/划痕过程,并进一步通过对比分析不同温度下纯Ni和NiTi合金在压/划痕过程中原子结构、表面形貌、摩擦力和摩擦系数的变化,研究了温度对NiTi合金摩擦系数的影响。结果表明,温度对NiTi合金摩擦性能的影响显著,在300~500 K范围内,温度越低,摩擦力与摩擦系数越小,这是由于在刻划过程中NiTi合金发生马氏体相变,NiTi合金表面向下凹陷,减少了NiTi表面与压头的接触,降低了对压头的阻碍,使摩擦力与摩擦系数大幅降低;当温度升高时,马氏体相变减少,NiTi合金的表面凹陷减少,使压头与NiTi合金的接触面积增大,阻碍增大,从而使得摩擦力和摩擦系数变大。而没有相变机制的金属Ni在刻划过程中,主要产生塑性形变,温度对其摩擦性能无显著影响。可见,温度对NiTi形状记忆合金的摩擦性能具备一定调控能力,可以通过控制温度达到减少磨损的目的,这可为延长NiTi合金元件的使用寿命提供理论基础和指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李锐
曾令碧
刘腾
王晓杰
杨平安
关键词:  NiTi形状记忆合金  分子动力学  摩擦  温度  相变    
Abstract: NiTi alloy has shape memory effect and superelasticity, which makes it different from other general materials. In order to reveal its friction characteristics from a micro perspective, the dynamics of pure Ni and NiTi alloys at different temperatures were studied using molecular dynamics and Scratching process. By comparing and analyzing the changes in the atomic structure, surface morphology, friction force and friction coefficient of pure Ni and NiTi alloys during the pressing and scratching process at different temperatures, the effect of temperature on the friction coefficient of NiTi alloys was studied. The results show that the temperature has a significant effect on the friction properties of NiTi alloys. In the temperature range of 300—500 K, the lower the temperature, the smaller the friction and coefficient of friction. This is due to the martensitic phase change of the NiTi alloy during the scoring process, the surface of the NiTi alloy is recessed downward, reducing the contact between the NiTi surface and the indenter, reducing the obstacle to the indenter, and greatly reducing the friction. When the temperature increases, the martensitic phase transformation decreases and the surface of the NiTi alloy is depressed. Decreasing the degree will increase the contact area between the indenter and the NiTi alloy, and increase the obstacle, which will increase the friction force and friction coefficient. However, during the scoring process of the metal Ni without a phase change mechanism, the plastic deformation and temperature are mainly generated. It has no significant effect on its friction performance, and its friction and coefficient of friction do not fluctuate significantly at different temperatures. Therefore, tempe-rature has a certain ability to regulate the friction properties of NiTi shape memory alloys, and the purpose of reducing wear can be achieved by controlling the temperature, which provides a theoretical basis and guiding for improving the service life of NiTi alloy components.
Key words:  NiTi shape memory alloy    molecular dynamics    friction    temperature    phase transition
                    发布日期:  2020-07-01
ZTFLH:  TB31  
基金资助: 重庆市技术创新与应用发展专项重点项目(cstc2019jscx-fxydX0085);重庆市教育委员会科学技术研究项目(KJZD-K201900602)
作者简介:  李锐,重庆邮电大学教授,在1999年获得重庆工业大学工学学士学位,并分别于2004年和2009年获得重庆大学硕士学位和博士学位。主要研究方向包括智能检测技术/摩擦控制和智能机械结构系统;杨平安,重庆邮电大学讲师,2012年毕业于重庆邮电大学电气工程与自动化专业,获得工学学士学位,2017年毕业于重庆大学仪器科学与技术专业,获得博士学位。主要研究方向包括智能仿生复合材料、柔性传感器、电磁屏蔽材料和结构设计。
引用本文:    
李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
LI Rui, ZENG Lingbi, LIU Teng, WANG Xiaojie, YANG Ping'an. Study on Friction Characteristics of Pure Ni/NiTi Alloy at Different Temperatures. Materials Reports, 2020, 34(Z1): 297-303.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/297
1 Bil C, Massey K, Abdullah E J. Journal of Intelligent Material Systems & Structures,2013,24(24),879.
2 Petrini L, Migliavacca F. Journal of Metallurgy,2011,2011,1.
3 Jani J M, Leary M, Subic A, et al. Materials & Design,2014,56(4),1078.
4 Sun T, Wang Q, Sun D, et al. Wear,2010,268,693.
5 Liu Y, Yan H, Wang Z W. Materials Science and Technology,2016,24(2),29.
6 Cheng Y Q, Wang C L, Zhang P, et al. Materials Science and Technology,2014,22(5),108.
7 Ye H Z, Liu R, Li D Y, et al. Composites Science & Technology,2001,61(7),987.
8 Takashi F, Makoto T, Tomoyuki K, et al. Materials Transactions,2001,42(2),323.
9 柳伟,郑玉贵,饶光斌,等.金属学报,2002,38(2),185.
10 潘登,刘长鑫,张泽洋,等.物理学报,2019,68(17),221.
11 樊江,戴琦晖,王晋斌.航空动力学报,2018,33(10),2333.
12 潘帅航,尹念,张执南.机械工程学报,2018,54(3),82.
13 Chowdhury P, Ren G, Sehitoglu H. Philosophical Magazine Letters,2015,95(12),574.
14 Ma G F, Qin S J, Shang J X, et al. Journal of Alloys & Compounds,2017,705,218.
15 Ko W S, Maisel S B, Grabowski B, et al. Acta Materialia,2017,123,90.
16 Stukowski A. Modelling & Simulation in Materials Science & Engineering,2012,20(4),45021.
17 Foiles S M, Baskes M I, Daw M S. Physical Review B,1986,33(12),7983.
18 Daw M S, Foiles S M, Baskes M I. Materials Science Reports,1993,9(7-8),251.
19 Zhou X W, Wadley H N G. Journal of Applied Physics,1998,84(4),2301.
20 Chang W Y, Fang T H, Lin S J, et al. Molecular Simulation,2010,36(11),815.
21 Xu S, Wan Q, Sha Z, et al. Computational Materials Science,2015,110,247.
22 Ko W S, Grabowski B, Neugebauer J. Physical Review B,2015,92(13),134107.
23 Ng K L, Sun Q P. MechaNics of Materials,2006,38(1-2),41.
24 Katanchi B, Choupani N, Khalil-Allafi J, et al. Materials Science & Engineering A,2017,688,202.
25 Miyazaki S, Otsuka K, Suzuki Y. Scripta Metallurgica,1981,15(3),287.
26 Hu L, Jiang S, Zhang Y, et al. Intermetallics,2016,70,45.
27 Liu Y, Xie Z, Humbeeck J V, et al. Acta Materialia,1998,46(12),4325.
28 Chen X, Liu T, Li R, et al. Computational Materials Science,2018,146,61.
[1] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[2] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[3] 赵光伟, 陈健, 丁翀, 方东, 叶永盛, 叶喜葱. 冷速与凝固路径对Al-Cu-Si合金相变储热性能的影响[J]. 材料导报, 2020, 34(Z1): 328-333.
[4] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[5] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[6] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[7] 郑铭达, 吴红庆, 左鹏鹏, 吴晓春. V对H13型压铸模具钢相变特性的影响[J]. 材料导报, 2020, 34(Z1): 440-443.
[8] 张朝磊, 胡佳丽, 李戬, 苗红生, 刘雅政. 胀断连杆用非调质钢C70S6的材料特性及组织性能控制[J]. 材料导报, 2020, 34(Z1): 444-447.
[9] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[10] 徐骏, 朱立坚, 刘刚, 宋炳坷. DLC-PFPE固液复合润滑体系的摩擦磨损性能研究[J]. 材料导报, 2020, 34(Z1): 567-571.
[11] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[12] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[13] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[14] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[15] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed