Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 67-73    
  无机非金属及其复合材料 |
石墨烯增强铜基复合材料的研究进展
丁晓飞, 范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
Research Progress on Graphene Reinforced Copper Matrix Composites
DING Xiaofei, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 5096KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯具有独特的二维结构、极好的力学性能、优异的导电和导热性能,将石墨烯引入铜基体,充分发挥石墨烯与铜的协同复合效应,有望获得高性能的铜基复合材料。目前,石墨烯增强铜基复合材料的综合性能相较于纯铜已有明显提高,但其制备工艺与稳定性等问题仍制约其高强、高导综合性能的提升,并限制了其在相关领域的应用发展。本文综述了石墨烯增强铜基复合材料的制备工艺、组织和性能研究的最新进展,重点讨论了石墨烯有效分散、石墨烯与铜界面改性以及石墨烯构型设计的方法,并对石墨烯增强铜基复合材料研究中存在的问题及未来发展方向进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁晓飞
范同祥
关键词:  石墨烯  铜基复合材料  高强高导    
Abstract: Graphene has become an ideal reinforcement because of its unique two-dimensional structure, high mechanical properties, excellent electrical and thermal conductivity. When graphene is introduced into copper matrix, high performance copper composites are expected to be prepared by fully exerting the synergistic effect of graphene and copper. At present, the comprehensive properties of graphene reinforced copper matrix composites have been significantly improved compared with those of pure copper, however, preparation technology and stability problems still restrain its enhancement of overall performance and practical application. This review offers a retrospection of the research efforts with respect to the preparation technology, microstructure and properties of graphene reinforced copper matrix composites, and especially discusses the effective dispersion of graphene, the modification of graphene-copper interface, and the design of graphene configuration. Meanwhile, the current challenges and future directions of graphene reinforced copper matrix composites are proposed.
Key words:  graphene    copper matrix composites    high strength and high conductivity
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB333  
基金资助: 国家重点研发专项课题(2017YFB0703101)
作者简介:  丁晓飞,2015年6月毕业于中国海洋大学,获得理学学士学位。现为上海交通大学金属基复合材料国家重点实验室研究生,在范同祥教授的指导下进行研究。目前主要研究领域为铜基复合材料。范同祥,上海交通大学材料学院教授、博士研究生导师。1999年获上海交通大学和日本大阪大学联合培养博士学位,2000—2001年在日本科学技术厅进行博士后研究工作。近年来作为主要人员主持或承担国家杰出青年基金项目、教育部新世纪优秀人才计划、霍英东基金优选资助课题、上海市基础研究重点项目和重大项目、上海市科委纳米专项等研究。兼任中国材料研究学会青年委员会理事、中国有色金属学会材料科学与工程委员会委员和多种国内外期刊审稿人。主要从事特种功能金属基复合材料和生物启迪功能材料工作。近年来,代表性论文发表在Prog. Mater. Sci.、Adv. Mater.、Adv. Funct. Mater.、J. Mater. Chem.、Chem. Mater.、Acta Mater.、J. Am. Ceram. Soc.、J. eur. Ceram. Soc.、Carbon、Micropor. Mesopor. Mat.、Nanotechnology、Scripta Mater.、J. Mater. Res.、Metall. Mater. Trans. A等。txfan@sjtu.edu.cn
引用本文:    
丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
DING Xiaofei, FAN Tongxiang. Research Progress on Graphene Reinforced Copper Matrix Composites. Materials Reports, 2019, 33(z1): 67-73.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/67
1 赵亚茹, 李勇, 李焕. 表面技术,2016,45(5),33.
2 辛丽莎, 孙瑞雪. 材料导报:综述篇,2013,27(5),51.
3 Li Y P, Xiao Z, et al. Journal of Alloys & Compounds,2017,723,1162.
4 Arnaud C, Lecouturier F, Mesguich D, et al. Materials Science & Engineering A,2016,649,209.
5 Zeng W, Xie J W, Zhou D S, et al. Journal of Alloys & Compounds,2018,745,55.
6 李岩, 宋美慧, 张煜, 等. 化学工程师,2017,10,13.
7 Liu L Q, Weng W, Lin W H. C.N. patent, WO2016090755 A1,2016.
8 Toshihiro K, Akira S, Isamu A, et al. U.S. patent, US5205878,1993.
9 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696),666.
10 Lee C G, Wei X D, Kysar J W, et al. Science,2008,321(5887),385.
11 Choi W, Lahiri I, Seelaboyina R, et al. Critical Reviews in Solid State & Materials Sciences,2010,35(1),71.
12 Balandin A A, Ghosh S, Bao W, et al. Nano Letters,2008,8(1),907.
13 匡达, 胡文彬. 无机材料学报,2013,28(3),235.
14 Walker L S, Marotto V R, Rafiee M A, et al. ACS Nano,2011,5(4),3182.
15 Xu Z, Gao C. Macromolecules,2010,43(16),6716.
16 Stankovich S, Dikin D A, Dommett G H B, et al. Nature,2006,442,282.
17 Li Z, Fan G L, Tan Z Q, et al. Nano-Micro Letters,2016,8(1),54.
18 王勇, 周吉学, 程开明, 等. 材料导报,2017,31(S1),451.
19 Yue H Y, Yao L H, Gao X, et al. Journal of Alloys & Compounds,2017,691,755.
20 Kim W J, Lee T J, Han S H. Carbon,2014,69(4),55.
21 Hwang J, Yoon T, Jin S H, et al. Advanced Materials,2013,25(46),6724.
22 Gao X, Yue H Y, Guo E, et al. Powder Technology,2016,301,601.
23 Xiong D B, Cao M, Guo Q, et al. ACS Nano,2015,9(7),6934.
24 Chen Y K, Zhang X, Liu E Z, et al. Journal of Alloys & Compounds,2016,688,69.
25 Xiao Q, Yi X O, Jiang B, et al. Advanced Materials Science,2017,2(2),1
26 凌自成. 石墨烯/铜基复合材料制备及其力电性能研究. 硕士学位论文, 昆明理工大学,2016.
27 Kim Y B, Lee J S, Yeom M S, et al. Nature Communications,2013,4,3114.
28 Xu Z P, Buehler M J. Journal of Physics: Condensed Matter,2010,22(48),485301.
29 Tang Y X, Yang X M, Wang R R, et al. Materials Science & Enginee-ring A,2014,599,247.
30 Meyer J C, Geim A K, Novoselov K S, et al. Nature,2007,446(7131),60.
31 Li D, Müller M B, Gilje S, et al. Nature Nanotechnology,2008,3(2),101.
32 Reina A, Jia X T, Ho J, et al. Nano Letters,2009,9(1),30.
33 Berger C, Song Z M, Li X B, et al. Science,2006,312(5777),1191.
34 Jiang R R, Zhou X F, Fang Q L, et al. Materials Science & Engineering A,2016,654,124.
35 Zhang D D, Zhan Z J. Journal of Alloys & Compounds,2016,654,226.
36 Cao M, Xiong D B, Tan Z Q, et al. Carbon,2017,117,65.
37 Yang M, Weng L, Zhu H X, et al. Carbon,2017,118,250.
38 Yang M, Weng L, Zhu H X, et al. Scripta Materialia,2017,138,17.
39 Chu K, Wang X H, Wang F, et al. Carbon,2018,127,102.
40 Chu K, Wang F, Wang X H, et al. Materials & Design,2018,144,290.
41 Yu A P, Ramesh P, Itkis M E, et al. Journal of Physical Chemistry C,2007,111(21),7565.
42 Chu K, Jia C C. Physica Status Solidi,2014,211(1),184.
43 张丹丹. 石墨烯/铜复合材料的制备、组织及力学性能研究. 博士学位论文, 燕山大学,2016.
44 张丹丹, 战再吉. 材料工程,2016,44(5),112.
45 郭俊贤, 王波, 杨振宇. 复合材料学报,2014,31(1),152.
46 Zhao X, Zhang Q H, et al. Macromolecules,2010,43(5),2357.
47 Liu L Q, Barber A H, Nuriel S, et al. Advanced Functional Materials,2005,15(6),975.
48 Li W P, Li D L, Fu Q, et al. RSC Advances,2015,5(98),80428.
49 Chen Y K, Zhang X, Liu E Z, et al. Scientific Reports,2016,6,19363.
50 Chu K, Wang F, Li Y B, et al. Composites Part A,2018,109,267.
51 Goli P, Ning H, Li X S, et al. Nano Letters,2014,14(3),1497.
52 Jagannadham K. Metallurgical & Materials Transactions Part A,2013,44(1),552.
53 Boden A, Boerner B J, Kusch P, et al. Nano Letters,2014,14(6),3644.
54 Firkowska I, Boden A, Boerner B, et al. Nano Letters,2015,15(7),4745.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[3] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[4] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[5] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[8] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[9] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[10] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[11] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[12] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[13] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[14] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[15] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed