Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 74-77    
  无机非金属及其复合材料 |
石墨表面TiC梯度涂层的制备及结构调制
胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇
国防科技大学空天科学学院,长沙 410073
Preparation and Structure Modulation of TiC Gradient Coating on Graphite Surface
HU Ting, WAN Hong, HUA Ye, GONG Jinyu, CHEN Xingyu
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073
下载:  全 文 ( PDF ) ( 2101KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在石墨表面原位反应形成TiC梯度涂层可以有效地提高石墨的高温耐氧化性能。本实验采用实验与化学热力学计算相结合的方法,探究了以Ti、TiO2和NH4Cl为固渗剂在石墨表面原位反应制备TiC梯度涂层的机理,并在涂层形成动力学过程分析的基础上,研究了温度和压力对涂层结构的影响规律。研究结果表明,在石墨基体固渗Ti的过程中,TiO2不是起惰性填料的作用,而是作为反应物参与反应,并促进TiC的原位反应形成,这与该固渗剂在碳钢表面形成TiC的机理不同。在不改变固渗剂成分的条件下,增大反应气体TiCl3(g)分压有利于气体扩散速率的提高,从而增大梯度涂层的厚度;提高固渗温度一方面提高TiCl3(g)扩散速率而增加梯度涂层的厚度,另一方面又提高TiCl3(g)与石墨原位反应形成TiC的速度,从而降低反应气体的渗透率。因此,通过调整固渗温度可使涂层的结构发生改变。在现有的实验条件下,将固渗温度从1 000 ℃提高到1 500 ℃,梯度涂层的厚度不断减小,表面涂层的厚度不断增大,涂层由TiC梯度涂层转变为TiC表面涂层结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡厅
万红
华叶
龚瑾瑜
陈兴宇
关键词:  石墨  TiC  梯度涂层  固渗法  原位反应机理    
Abstract: High temperature oxidation resistance of graphite can be effectively improved by a gradient TiC coating, which is in-situ reacted on the graphite surface. The in-situ reaction mechanism, using Ti, TiO2 and NH4Cl as pack cementation agent to prepare TiC gradient coating on the surface of graphite, was investigated by the combination of experimental and chemical thermodynamic calculations in this paper. Also, based on the analyses of coating formation kinetics, the influence of temperature and pressure on the structure of the coating was studied. The results show that in the process of pack cementation on graphite substrate, TiO2 does not act as an inert filler, but participates in the reaction as a reactant and promotes the formation of TiC. This is different from the formation mechanism of TiC coating on the carbon steel surface using the same cementing agents. Without changing the composition of the cementing agent, increasing the partial pressure of the TiCl3 gas is beneficial to the increase of the gas diffusion rate, thereby increasing the thickness of the gradient coating. On the other hand, though the diffusion rate of TiCl3 gas is increased with the increase of the pack cementation temperature, the permeability of the TiCl3 gas is decreased as the rate of reaction between TiCl3 gas and graphite increases with temperature. Therefore, the structure of the gradient coating can be modulated by the controlling of pack cementation temperature. Under the existing experimental conditions, the thickness of the gradient TiC in the graphite is continuously reduced and the thickness of the surface TiC coating on the graphite is continuously increased when the pack cementation temperature is increased from 1 000 ℃ to 1 500 ℃, resulting in the coating structure is changed from the TiC gradient coating to the TiC surface coating.
Key words:  graphite    TiC    gradient coating    pack cementation    in-situ reaction mechanism
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB321  
基金资助: 国家自然科学基金(11705281)
作者简介:  胡厅,2018年12月毕业于国防科技大学,获得材料科学与工程专业工学硕士学位。主要从事电子功能材料领域的研究。万红,国防科技大学,副教授。2005年毕业于国防科技大学,获得材料科学与工程博士学位。主要从事用于强电子束生成的高电流二极管和阴极材料研究。wanhong@nudt.edu.cn
引用本文:    
胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
HU Ting, WAN Hong, HUA Ye, GONG Jinyu, CHEN Xingyu. Preparation and Structure Modulation of TiC Gradient Coating on Graphite Surface. Materials Reports, 2019, 33(z1): 74-77.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/74
1 李圣华. 炭和石墨制品,冶金工业出版社,1981.
2 饶娟,张盼,何帅,等. 中国科学,2017,47(1),13.
3 Mantel C L. Handbook of carbon, graphite,diamond and fullerenes,Noyes publications,USA,1993.
4 Wilson B. Lubrication and Tribology,1995,47(6), 6.
5 Rajan T P D,et al. Journal of Materials Science,1998,3(3),3491.
6 Goth Y, Koike M. Materials Research Bulletin,2001,36(13),2263.
7 Liu X, Zhang S. Journal of the American Ceramic Society,2007,91(2),667.
8 曹晓明,温鸣,杜安. 现代金属表面合金化技术,化学工业出版社,2006.
9 楼白杨. 热加工工艺,1992(1),33.
10 楼白杨.浙江大学学报,1992(2),21.
11 黄济元.金属热处理,1991(2),3.
12 翟云芳. 渗流力学,石油工业出版社,1999.
13 孔祥言. 高等渗流力学,中国科学技术大学出版社,2010.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[13] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[14] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[15] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed